第9章不等式导学案1.docx
《第9章不等式导学案1.docx》由会员分享,可在线阅读,更多相关《第9章不等式导学案1.docx(15页珍藏版)》请在冰豆网上搜索。
第9章不等式导学案1
文武镇初级中学1215教学模式
集体备课学案
年级:
七年级(下册)
科目:
数学
课题:
第九章不等式与不等式组
主备教师:
董坤
辅备教师:
刀恒、刀国民、高荣伟、
主备课时间:
2017年2月28日
使用教师:
董坤、刀国民、高荣伟、刀恒
辅备课时间:
2017年4月28日
使用时间:
第十一周
课题:
9.1.1不等式及其解集课型:
新授课课时:
1
授课人:
班级:
授课时间:
学习目标:
1、了解不等式的概念,能用不等式表示简单的不等关系。
2、知道什么是不等式的解,什么是解不等式,并能判断一个数是否是一个不等式的解。
3、理解不等式的解集,能用数轴正确表示不等式的解集,对于一个较简单的不等式能直接说出它的解集。
4、了解一元一次不等式的概念。
学习重点与难点
重点:
不等式的解集的表示.
难点:
不等式解集的确定.
学习过程
一、课前预习部分
用圈、点、勾、划、记的方法有效预习P114—115,完成下列问题:
1、数量有大小之分,它们之间有相等关系,也有不等关系,请你用恰当的式子表示出下列数量关系:
(1)a与1的和是正数;
(2)y的2倍与1的和大于3;(3)x的一半与x的2倍的和是非正数;
(4)c与4的和的30%不大于-2;(5)x除以2的商加上2,至多为5;
(6)a与b两数的和的平方不可能大于3.
解:
(1)__________
(2)___________(3)__________(4)___________(5)_____________6)像上面那样,用符号“____”或“____”表示________关系的式子叫做不等式;用“_____”表示不等关系的式子也是不等式。
2、当x=78时,不等式x﹥50成立,那么78就是不等式x﹥50的解。
与方程类似,我们把使不等式______的____________叫做不等式的解。
完成P114思考中提出的问题。
3、一个含有未知数的不等式的________的解,组成这个不等式的_________。
求不等式的_______的过程叫做解不等式。
4、认真阅读P122小贴士,说出下列两个数轴所表示解集的不同之处,并与你的同伴交流:
你能画出数轴并在数轴上表示出下列不等式的解集吗?
(1)x﹥3
(2)x﹤2(3)y≥-1
5、类似于一元一次方程,含有___________,未知数的次数是____的不等式,叫做一元一次不等式。
二、课堂探究部分(先独立完成,再小组讨论完善答案)
1、对于下列各式中:
①3﹥2;②x≠0;③a﹤0;④x+2=5;⑤2x+xy+y;⑥
+1﹥5⑦a+b﹥0不等式有____(填序号),一元一次不等式有__________.
2、下列哪些数值是不等式x+3﹥6的解?
那些不是?
-4,-2.5,0,1,2.5,3,3.2,4.8,8,12.
你还能找出这个不等式的其他解吗?
这个不等式有多少个解?
3、用不等式表示.
(1)a与5的和是正数;
(2)b与15的和小于27;
(3)x的4倍大于或等于8;(4)d与e的和不大于0.
三、自我检测反馈部分(独立完成)
1、下列数学表达式中,不等式有()
①-3﹤0;②4x+3y﹥0;③x=3;④x≠2;⑤x+2﹥y+3
(A)1个.(B)2个.(C)3个.(D)4个.
2、当x=-3时,下列不等式成立的是()
(A)x-5﹤-8.(B)2x+2﹥0.(C)3+x﹤0.(D)2(1-x)﹥7.
3、用不等式表示:
(1)a的相反数是正数;
(2)y的2倍与1的和大于3;
(3)a的一半小于3;(4)d与5的积不小于0;
(5)x的2倍与1的和是非正数.
4、直接写出下列不等式的解集,并把解集在数轴上表示出来:
(1)x+3﹥5;
(2)2x﹤8;(3)x-2≥0.
4、直接写出下列不等式的解集,并把解集在数轴上表示出来:
(1)x+2﹥6;
(2)2x﹤10;(3)x-2≥0.5.
拓展延伸:
(选做)
1、不等式x﹤4的非负整数解的个数有()
(A)4个.(B)3个.(C)2个.(D)1个.
2、已知(a-2)-5﹥3是关于x的一元一次不等式试求a的值.
四、小结与反思:
教师复备(学生笔记)
课题:
9.1.2不等式的性质课型:
新授课课时:
1
授课人:
班级:
授课时间:
学习目标
1、理解不等式的性质,掌握不等式的解法。
2、渗透数形结合的思想
3.能熟练的应用不等式的基本性质进行不等式的变形。
学习重点与难点
重点:
不等式的性质和解法.;难点:
不等号方向的确定。
学习过程
一、课前预习部分
用圈、点、勾、划、记的方法有效预习P116—119,完成下列问题:
1、
(1)5>3,5+23+2,5-23-2
(2)-1<3,-1+23+2,-1-33-3
(3)6>2,6×52×5,6×(-5)2×(-5)
(4)-2<3,(-2)×63×6,(-2)×(-6)3×(-6)
(5)-4>-6(-4)÷2(-6)÷2,
(-4)×(-2)(-6)×(-2)
2、从以上练习中,你发现了什么规律?
(1)当不等式的两边同时加上或减去同一个数(正数或负数)时,不等号的方向__________。
(2)当不等式的两边同时乘上或除以同一个正数时,不等号的方向______________。
(3)当不等式的两边同时乘上或除以同一个负数时,不等号的方向______________。
(4)当不等式的两边同时乘上0时,不等式__________________。
请你再用几个例子试一试,还有类似的结论吗?
请把你的发现告诉同学们并与他们交流:
你能总结出不等式的性质了吗?
不等式性质1:
。
用数学式子表示为:
。
不等式性质2:
。
用数学式子表为:
。
不等式性质3:
。
用数学式子表示为:
。
3、你回忆等式的性质,说出不等式性质与等式性质的相同之处与不同之处吗?
二、课堂探究部分(先独立完成,再小组讨论完善答案)
例1利用不等式的性质,填”>”,:
<”
(1)若a>b,则2a+12b+1;
(2)若-1.25y<10,则y-8;
(3)若a0,则ac+cbc+c;
(4)若a>0,b<0,c<0,则(a-b)c0.
例2利用不等式性质解下列不等式,并把解集在数轴上表示出来.
(1)x-24>26;
(2)3x<16x+1;(3)
x-8>94;(4)-4x>3.
三、自我检测反馈部分(独立完成)
1、解不等式,并在数轴上表示解集:
(1)8x-2<7x+3
(2)3-5x≥4-6x
2、用不等式表示下列语句并写出解集:
(1)x与3的和不小于6;
(2)y与1的差不大于0.
3、请你当裁判:
小红学完不等式的性质后,说若a>b,则有2a>2b,3a>3b,4a>4b,5a>5b,……,所以ac>bc,你同意你的看法吗?
4、判断对错,并说明理由
(1)∵a
(2)∵a
(3)∵a0∴a>0
(5)∵-a<0∴3a<0
四、小结与反思:
教师复备(学生笔记)
课题:
9.2实际问题与一元一次不等式课型:
新授课课时:
1
授课人:
班级:
授课时间:
学习目标
1.会解一元一次不等式.
2.会用不等式来表示实际问题中的不等关系.
学习重点与难点
重点:
掌握解一元一次不等式的步骤;会用一元一次不等式解决简单的实际问题.
难点:
寻找实际问题中的不等关系,建立数学模型.
学习过程
一、课前预习准备部分
1、知识要点归纳:
要点一:
解一元一次不等式与解一元一次方程的区别
(1)在解一元一次不等式时去分母和系数化为1时,如果乘数或除数是负数,要把不等号改变方向;
(2)不等式的解集含有无限多个数,而一元一次方程只有一个解;
(3)解一元一次不等式,是根据不等式的性质,将不等式化为
的形式,而解一元一次方程,是根据等式的性质将方程逐步化为
的形式。
要点二:
列不等式解应用题的一般步骤:
审题→设未知数→找不等关系→列出不等式→解这个不等式求出解集→检验所求的解集是否正确,是否符合实际情况→写出答案。
2、解下列不等式,并把解集在数轴上表示出来
(1)
;
(2)
二、课堂探究部分(先独立完成,再小组讨论完善答案)
例1、甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:
在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.顾客怎样选择商店购物能获得更大优惠?
这个问题较复杂,从何处入后考虑它呢?
甲商店优惠方案的起点为购物款达___元后;
乙商店优惠方案的起点为购物款过___元后.
我们是否应分情况考虑?
可以怎样分情况呢?
(1)如果累计购物不超过50元,则在两店购物花费有区别吗?
(2)如果累计购物超过50元而不超过100元,则在哪家商店购物花费小?
为什么?
(3)如果累计购物超过100元,那么在甲店购物花费小吗?
三、自我检测反馈部分(独立完成亲自动手做一做)
1.某公司要招甲、乙两种工作人员30人,甲种工作人员月薪600元,乙种工作人员月薪1000元.现要求每月的工资不能超过2.2万元,问至多可招乙种工作人员多少名?
2.某校校长暑假将带领该校市级优秀学生乘旅行社的车去A市参加科技夏令营,甲旅行社说:
“如果校长买全票一张,则其余学生可享受半价优惠”.乙旅行社说:
“包括校长在内全部按全票的6折优惠”,若全票价为240元.
(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙.分别计算两家旅行社的收费(建立表达式);
(2)当学生数是多少时,两家旅行社的收费一样?
(3)就学生数x讨论哪家旅行社更优惠.
品名
厂家批发价(元/只)
商场零售价(元/只)
篮球
130
160
排球
100
120
3、为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如右表:
经预算,该企业购买设备的资金不高于105万元.
(1)请你设计该企业有几种购买方案;
(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案?
四、小结与反思:
教师复备(学生笔记)
课题:
9.3一元一次不等式组课型:
新授课课时:
1
授课人:
班级:
授课时间:
学习目标
1、理解一元一次不等式组及其解的意义;
2、初步感知利用一元一次不等式解集的数轴表示求不等式组的解和解集的方法。
3.能运用不等式组解决简单的实际问题。
学习重点与难点
重点:
解一元一次不等式组
难点:
运用一元一次不等式组解决实际问题
学习过程
一、课前预习部分
用圈、点、勾、划、记的方法有效预习P127—129,完成下列问题:
1、动手解一解下列不等式,并在数轴上表示
1
;
;
;
;
将上面内容进行组合,按要求作答1、分别解出不等式;2、将结果在数轴上表示出来;3、取公共部分
(1)
(2)
3、学生思考:
(1)你能为它取个名字吗?
(2)你能将它们的解集在数轴上表示出来吗?
(3)哪一部分是它的最后解集呢?
二、课堂探究部分(先独立完成,再小组讨论完善答案)
例1、解下列不等式组,并在数轴上标出解集。
1)
(2)
(3)
三、自我检测反馈部分(独立完成亲自动手做一做)
1、
(1)
(2)
(3)
2、解不等式组:
,并写出不等式组的正整数解
3、某校今年冬季烧煤取暖时间为四个月,如果每月比计划多烧5吨煤,那么取暖用煤总量将超过100吨;如果每月比计划少烧5吨煤,那么取暖用煤总量不足68吨。
该校计划每月烧煤多少吨?
四、小结与反思:
教师复备(学生笔记)