二极管符号.docx

上传人:b****9 文档编号:28957464 上传时间:2023-07-20 格式:DOCX 页数:27 大小:1.17MB
下载 相关 举报
二极管符号.docx_第1页
第1页 / 共27页
二极管符号.docx_第2页
第2页 / 共27页
二极管符号.docx_第3页
第3页 / 共27页
二极管符号.docx_第4页
第4页 / 共27页
二极管符号.docx_第5页
第5页 / 共27页
点击查看更多>>
下载资源
资源描述

二极管符号.docx

《二极管符号.docx》由会员分享,可在线阅读,更多相关《二极管符号.docx(27页珍藏版)》请在冰豆网上搜索。

二极管符号.docx

二极管符号

二极管符号

  二极管(国标)

  二极管的判别及参数

  1.简述

  

半导体是一种具有特殊性质的物质,它不像导体一样能够完全导电,又不像绝缘体那样不能导电,它介于两者之间,所以称为半导体。

半导体最重要的两种元素是硅(读“guī”)和锗(读“zhě”)。

我们常听说的美国硅谷,就是因为那里有好多家半导体厂商。

  二极管应该算是半导体器件家族中的元老了。

很久以前,人们热衷于装配一种矿石收音机来收听无线电广播,这种矿石后来就被做成了晶体二极管。

 

  二极管最明显的性质就是它的单向导电特性,就是说电流只能从一边过去,却不能从另一边过来(从正极流向负极)。

我们用万用表来对常见的1N4001型硅整流二极管进行测量,红表笔接二极管的负极,黑表笔接二极管的正极时,表针会动,说明它能够导电;然后将黑表笔接二极管负极,红表笔接二极管正极,这时万用表的表针根本不动或者只偏转一点点,说明导电不良(万用表里面,黑表笔接的是内部电池的正极)。

  常见的几种二极管中有玻璃封装的、塑料封装的和金属封装的等几种。

像它的名字,二极管有两个电极,并且分为正负极,一般把极性标示在二极管的外壳上。

大多数用一个不同颜色的环来表示负极,有的直接标上“—”号。

大功率二极管多采用金属封装,并且有个螺母以便固定在散热器上。

 

 

2.半导体二极管的极性判别及选用

  

(1)半导体二极管的极性判别

  一般情况下,二极管有色点的一端为正极,如2AP1~2AP7,2AP11~2AP17等。

如果是透明玻璃壳二极管,可直接看出极性,即内部连触丝的一头是正极,连半导体片的一头是负极。

塑封二极管有圆环标志的是负极,如IN4000系列。

  无标记的二极管,则可用万用表电阻挡来判别正、负极,万用表电阻挡示意图见图T304。

  根据二极管正向电阻小,反向电阻大的特点,将万用表拨到电阻挡(一般用R×100或R×1k挡。

不要用R×1或R×10k挡,因为R×1挡使用的电流太大,容易烧坏管子,而R×10k挡使用的电压太高,可能击穿管子)。

用表笔分别与二极管的两极相接,测出两个阻值。

在所测得阻值较小的一次,与黑表笔相接的一端为二极管的正极。

同理,在所测得较大阻值的一次,与黑表笔相接的一端为二极管的负极。

如果测得的正、反向电阻均很小,说明管子内部短路;若正、反向电阻均很大,则说明管子内部开路。

在这两种情况下,管子就不能使用了。

  

(2)半导体二极管的选用

  通常小功率锗二极管的正向电阻值为300~500Ω,硅管为1kΩ或更大些。

锗管反向电阻为几十千欧,硅管反向电阻在500kΩ以上(大功率二极管的数值要大得多)。

正反向电阻差值越大越好。

  点接触二极管的工作频率高,不能承受较高的电压和通过较大的电流,多用于检波、小电流整流或高频开关电路。

面接触二极管的工作电流和能承受的功率都较大,但适用的频率较低,多用于整流、稳压、低频开关电路等方面。

  选用整流二极管时,既要考虑正向电压,也要考虑反向饱和电流和最大反向电压。

选用检波二极管时,要求工作频率高,正向电阻小,以保证较高的工作效率,特性曲线要好,避免引起过大的失真。

  3.半导体分立元器件命名方法

  利用二极管单向导电的特性,常用二极管作整流器,把交流电变为直流电,即只让交流电的正半周(或负半周)通过,再用电容器滤波形成平滑的直流。

事实上好多电器的电源部分都是这样的。

二极管也用来做检波器,把高频信号中的有用信号“检出来”,老式收音机中会有一个“检波二极管”,一般用2AP9型锗管。

  二极管的类型也有好几种,对于电子制作来说,常常用到以下的二极管:

用于稳压的稳压二极管,用于数字电路的开关二极管,用于调谐的变容二极管,以及光电二极管等,最常看见的是发光二极管。

1.发光二极管

  

(1)符号

      

  

(2)发光二极管

  发光二极管在日常生活电器中无处不在,它能够发光,有红色、绿色和黄色等,有直径为3mm或5mm圆形的,也有规格为2×5mm长方形的。

与普通二极管一样,发光二极管也是由半导体材料制成的,也具有单向导电的性质,即只有极性正确才能发光。

  发光二极管的发光颜色一般和它本身的颜色相同,但是近年来出现了透明的发光管,它也能发出红黄绿等颜色的光,只有通电了才能知道。

辨别发光二极管正负极的方法,有实验法和目测法。

实验法就是通电看看能不能发光,若不能就是极性接错或是发光管损坏。

  注意发光二极管是一种电流型器件,虽然在它的两端直接接上3V的电压后能够发光,但容易损坏,在实际使用中一定要串接限流电阻,工作电流根据型号不同一般为1mA到30mA。

另外,由于发光二极管的导通电压一般为1.7V以上,所以一节1.5V的电池不能点亮发光二极管。

同样,一般万用表的R×1挡到R×1k挡均不能测试发光二极管,而R×10k挡由于使用15V的电池,能把有的发光管点亮。

  用眼睛来观察发光二极管,可以发现内部的两个电极一大一小。

一般来说,电极较小、个头较矮的一个是发光二极管的正极,电极较大的一个是它的负极。

若是新买来脚较长的一个是正极。

   

  (3)发光二极管的伏安特性  发光二极管的伏安特性与普通二极管类似,但它的正向压降较大,并在正向压降达到一定值时发光。

发光颜色和构成PN结的材料有关,通常有红、黄、绿、蓝和紫等颜色。

发光亮度近似和工作电流密度成正比,但掺杂ZnO和GaP的发光二极管,其发光亮度随电流密度的增加会很快趋向饱和。

另外,随结温的升高,LED的发光亮度将会减弱。

 

  由于发光二极管的响应时间(光信号对电信号的延迟时间)一般小于100ns,故直流信号、交流信号或脉冲信号均可作为它的驱动信号。

  国产LED器件用FG×1×2×3×4×5×6命名,其中×1表示材料,×1取值1,2,3分别对应LED的材料为GaAsP,GaAsAl和GaP。

×2表示发光颜色,×2取1~6时表示发光颜色为红、橙、黄、绿、蓝和复色,×3表示封装形式。

×4表示外形,取0~6各整数时,分别指发光二极管的外形为圆形、长方形、符号形、三角形、正方形、组合形和特殊形。

×5×6为序号。

使用发光二极管时,若用电压源驱动,则应在电路中串接限流电阻,以防止LED中电流过大而损坏。

用交流信号驱动时,为防止LED被反向击穿,可在两端反极性并连整流二极管。

几种红色发光二极管的参数见表B313。

2.Z310半导体发光器件:

LED数码管

  常用的LED数码管如图T310(a)所示。

它是利用发光二极管的制造工艺,由7个条状管芯和一个点状管芯的发光二极管制成。

LED数码管有两种不同的结构形式,其等效电路分别如图T311所示。

各段发光二极管的阳极连在一起作为公共端,因此称为共阳极数码管。

工作时应当将阳极连电源正极,各驱动输入端通过限流电阻接相应的译码驱动器的输出。

当译码驱动器的输出为低电平时,数码管相应的段变亮。

  LED数码管各段发光二极管的伏安特性与普通二极管类似,只是正向压降稍大,在正向电流达到适当大小时就能发光。

在一定范围内,发光亮度和正向电流的大小近似成正比,但正向电流应小于允许的最大电流,并应留有适当的裕量,一般以不超过极限电流的70%为宜。

因此,它的驱动输入端和译码电路或电压源相连时,应当串接合适的限流电阻,以免损坏器件。

  表B314列出了几种数码管的参数。

  LED数码管的大小规格很多,一般尺寸大的工作电压也大,这是因为大尺寸数码管的每一段可能是由几个发光二极管串联组成,称为导光柱型。

国产LED数码管的管脚排列规格很多,因此,使用时除查产品说明书外,主要采用实测的方法来确定各管脚的功能,下面以共阳极数码管为例来说明。

  先按图T312准备好测试线路,把数码管的左下角接地,再使A端逐个和其它管脚接触。

若A端和所有管脚都已接触过,而数码管各段全不亮,则左下角管脚即为阳极或空脚(设数码管是好的)。

若A端接触管脚时数码管上某段变亮,则A端接触的管脚为阳极。

然后使A和阳极连好,用地线分别接触阳极以外的各管脚,相应的段就会变亮,从而可确定管脚和显示段间的对应关系。

 

  3.Z312半导体光敏器件:

光敏二极管 

  光敏二极管又称光电二极管,目前使用最多的是光电二极管。

它有四种类型:

PN结型,PIN结型,雪崩型和肖特基结型。

以下简介PN结型光敏二极管。

  PN结型光敏二极管同普通二极管一样,也是PN结构造,只是结面积较大,结深较浅,管壳上有光窗,从而使人射光容易注入PN结的耗尽区中进行光电转换,大的结面积增加了有效光面积,提高了光电转换效率。

  在无光照射时,光敏二极管的伏安特性和普通二极管一样,此时的反向饱和电流叫暗电流,一般在几微安到几百微安之间,其值随反向偏压的增大和环境温度的升高而增大。

在检测弱光电信号时,必须考虑用暗电流小的管子。

 

  在有光照时,光敏二极管在一定的反偏电压范围内(UR≥5V),其反向电流将随光照强度(10-3~103lx范围内)的增加而线性增加,这时的反向电流又叫光电流。

因此,对应一定的光照强度,光敏二极管相当于一个恒流源。

在有光照而无外加电压时,光敏二极管相当于一个电池,P区为正,N区为负。

  光敏二极管有一定光谱响应范围,并对某波长的光有最高的响应灵敏度(峰值波长)。

因此,为获取最大的光电流,应选择光谱响应特性符合待测光谱的光敏二极管,同时加大照度和调整入射的角度。

  光敏二极管的响应时间,一般小于几百微秒,主要取决于结电容和外部电路电阻的乘积。

表B316列出了几种光敏二极管的参数,其中灵敏度指输入给定波长的单位功率时,光敏二极管能输出的光电流值。

什么是变阻二极管

1.变阻二极管的作用及特性变阻二极管是利用PN结之间等效电阻可变的原理制成的半导体器件,主要用在10~1000MHZ高频电路或开关电源等电路中作可调衰减器,起限幅、保护等作用。

  变阻二极管的等效电阻,随加在二极管两端的正向偏置电压的大小变化而改变。

当二极管两端的正向偏压增高时,二极管的正向电流将增大,其等效内阻将减小;当二极管两端的正向偏压降压时,二极管的正向电流也随之减小,其等效内阻将增大。

当二极管的外加偏置电压固定时,二极管的等效电阻会保持稳定。

  变阻二极管一般采用轴向塑料封装,如图4-51所示。

图4-52是其应用电路。

     

  2.常见的变阻二极管常见的用于高频电路中的高频变阻二极管有1SV121和1SV99等型号,其正向偏置电流在0~10mA变化时,其等效内阻则在8Ω~3kΩ之间变化。

  用于彩色电视机开关电源中的变阻二极管有SV-02~SV-08等型号,等效内阻均较大,通常在几十千欧姆至几百千欧姆之间。

表4-47是SV系列变阻二极管的主要参数。

各类二极管的检测方法介绍

(一)普通二极管的检测(包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性。

通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二极管是否损坏。

  1.极性的判别 将万用表置于R×100档或R×1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果。

两次测量的结果中,有一次测量出的阻值较大(为反向电阻),一次测量出的阻值较小(为正向电阻)。

在阻值较小的一次测量中,黑表笔接的是二极管的正极,红表笔接的是二极管的负极。

  2.单负导电性能的检测及好坏的判断 通常,锗材料二极管的正向电阻值为1kΩ左右,反向电阻值为300左右。

硅材料二极管的电阻值为5kΩ左右,反向电阻值为∞(无穷大)。

正向电阻越小越好,反向电阻越大越好。

正、反向电阻值相差越悬殊,说明二极管的单向导电特性越好。

  若测得二极管的正、反向电阻值均接近0或阻值较小,则说明该二极管内部已击穿短路或漏电损坏。

若测得二极管的正、反向电阻值均为无穷大,则说明该二极管已开路损坏。

  3.反向击穿电压的检测 二极管反向击穿电压(耐压值)可以用晶体管直流参数测试表测量。

其方法是:

测量二极管时,应将测试表的“NPN/PNP”选择键设置为NPN状态,再将被测二极管的正极接测试表的“C”插孔内,负极插入测试表的“e”插孔,然后按下“V(BR)”键,测试表即可指示出二极管的反向击穿电压值。

  也可用兆欧表和万用表来测量二极管的反向击穿电压、测量时被测二极管的负极与兆欧表的正极相接,将二极管的正极与兆欧表的负极相连,同时用万用表(置于合适的直流电压档)监测二极管两端的电压。

如图4-71所示,摇动兆欧表手柄(应由慢逐渐加快),待二极管两端电压稳定而不再上升时,此电压值即是二极管的反向击穿电压。

  

(二)稳压二极管的检测

    1.正、负电极的判别 从外形上看,金属封装稳压二极管管体的正极一端为平面形,负极一端为半圆面形。

塑封稳压二极管管体上印有彩色标记的一端为负极,另一端为正极。

对标志不清楚的稳压二极管,也可以用万用表判别其极性,测量的方法与普通二极管相同,即用万用表R×1k档,将两表笔分别接稳压二极管的两个电极,测出一个结果后,再对调两表笔进行测量。

在两次测量结果中,阻值较小那一次,黑表笔接的是稳压二极管的正极,红表笔接的是稳压二极管的负极。

  若测得稳压二极管的正、反向电阻均很小或均为无穷大,则说明该二极管已击穿或开路损坏。

  2.稳压值的测量 用0~30V连续可调直流电源,对于13V以下的稳压二极管,可将稳压电源的输出电压调至15V,将电源正极串接1只1.5kΩ限流电阻后与被测稳压二极管的负极相连接,电源负极与稳压二极管的正极相接,再用万用表测量稳压二极管两端的电压值,所测的读数即为稳压二极管的稳压值。

若稳压二极管的稳压值高于15V,则应将稳压电源调至20V以上。

  也可用低于1000V的兆欧表为稳压二极管提供测试电源。

其方法是:

将兆欧表正端与稳压二极管的负极相接,兆欧表的负端与稳压二极管的正极相接后,按规定匀速摇动兆欧表手柄,同时用万用表监测稳压二极管两端电压值(万用表的电压档应视稳定电压值的大小而定),待万用表的指示电压指示稳定时,此电压值便是稳压二极管的稳定电压值。

  若测量稳压二极管的稳定电压值忽高忽低,则说明该二极管的性不稳定。

  图4-72是稳压二极管稳压值的测量方法。

  (三)双向触发二极管的检测

  1.正、反向电阻值的测量用万用表R×1k或R×10k档,测量双向触发二极管正、反向电阻值。

正常时其正、反向电阻值均应为无穷大。

若测得正、反向电阻值均很小或为0,则说明该二极管已击穿损坏。

  2.测量转折电压 测量双向触发二极管的转折电压有三种方法。

  第一种方法是:

将兆欧表的正极(E)和负极(L)分别接双向触发二极管的两端,用兆欧表提供击穿电压,同时用万用表的直流电压档测量出电压值,将双向触发二极管的两极对调后再测量一次。

比较一下两次测量的电压值的偏差(一般为3~6V)。

此偏差值越小,说明此二极管的性能越好。

  第二种方法是:

先用万用表测出市电电压U,然后将被测双向触发二极管串入万用表的交流电压测量回路后,接入市电电压,读出电压值U1,再将双向触发二极管的两极对调连接后并读出电压值U2。

  若U1与U2的电压值相同,但与U的电压值不同,则说明该双向触发二极管的导通性能对称性良好。

若U1与U2的电压值相差较大时,则说明该双向触发二极管的导通性不对称。

若U1、U2电压值均与市电U相同时,则说明该双向触发二极管内部已短路损坏。

若U1、U2的电压值均为0V,则说明该双向触发二极管内部已开路损坏。

  第三种方法是:

用0~50V连续可调直流电源,将电源的正极串接1只20kΩ电阻器后与双向触发二极管的一端相接,将电源的负极串接万用表电流档(将其置于1mA档)后与双向触发二极管的另一端相接。

逐渐增加电源电压,当电流表指针有较明显摆动时(几十微安以上),则说明此双向触发二极管已导通,此时电源的电压值即是双向触发二极管的转折电压。

  图4-73是双向触发二极管转折电压的检测方法。

(四)发光二极管的检测

  1.正、负极的判别 将发光二极管放在一个光源下,观察两个金属片的大小,通常金属片大的一端为负极,金属片小的一端为正极。

  2.性能好坏的判断

  用万用表R×10k档,测量发光二极管的正、反向电阻值。

正常时,正向电阻值(黑表笔接正极时)约为10~20kΩ,反向电阻值为250kΩ~∞(无穷大)。

较高灵敏度的发光二极管,在测量正向电阻值时,管内会发微光。

若用万用表R×1k档测量发光二极管的正、反向电阻值,则会发现其正、反向电阻值均接近∞(无穷大),这是因为发光二极管的正向压降大于1.6V(高于万用表R×1k档内电池的电压值1.5V)的缘故。

  用万用表的R×10k档对一只220μF/25V电解电容器充电(黑表笔接电容器正极,红表笔接电容器负极),再将充电后的电容器正极接发光二极管正极、电容器负极接发光二极管负极,若发光二极管有很亮的闪光,则说明该发光二极管完好。

  也可用3V直流电源,在电源的正极串接1只33Ω电阻后接发光二极管的正极,将电源的负极接发光二极管的负极(见图4-74),正常的发光二极管应发光。

或将1节1.5V电池串接在万用表的黑表笔(将万用表置于R×10或R×100档,黑表笔接电池负极,等于与表内的1.5V电池串联),将电池的正极接发光二极管的正极,红表笔接发光二极管的负极,正常的发光二极管应发光。

  (五)红外发光二极管的检测

  1.正、负极性的判别 红外发光二极管多采用透明树脂封装,管心下部有一个浅盘,管内电极宽大的为负极,而电极窄小的为正极。

也可从管身形状和引脚的长短来判断。

通常,靠近管身侧向小平面的电极为负极,另一端引脚为正极。

长引脚为正极,短引脚为负极。

  2.性能好坏的测量 用万用表R×10k档测量红外发光管有正、反向电阻。

正常时,正向电阻值约为15~40kΩ(此值越小越好);反向电阻大于500kΩ(用R×10k档测量,反向电阻大于200kΩ)。

若测得正、反向电阻值均接近零,则说明该红外发光二极管内部已击穿损坏。

若测得正、反向电阻值均为无穷大,则说明该二极管已开路损坏。

若测得的反向电阻值远远小于500kΩ,则说明该二极管已漏电损坏。

  (六)红外光敏二极管的检测

  将万用表置于R×1k档,测量红外光敏二极管的正、反向电阻值。

正常时,正向电阻值(黑表笔所接引脚为正极)为3~10kΩ左右,反向电阻值为500kΩ以上。

若测得其正、反向电阻值均为0或均为无穷大,则说明该光敏二极管已击穿或开路损坏。

  在测量红外光敏二极管反向电阻值的同时,用电视机遥控器对着被测红外光敏二极管的接收窗口(见图4-75)。

正常的红外光敏二极管,在按动遥控器上按键时,其反向电阻值会由500kΩ以上减小至50~100kΩ之间。

阻值下降越多,说明红外光敏二极管的灵敏度越高。

  (七)其他光敏二极管的检测

  1.电阻测量法 用黑纸或黑布遮住光敏二极管的光信号接收窗口,然后用万用表R×1k档测量光敏二极管的正、反向电阻值。

正常时,正向电阻值在10~20kΩ之间,反向电阻值为∞(无穷大)。

若测得正、反向电阻值均很小或均为无穷大,则是该光敏二极管漏电或开路损坏。

  再去掉黑纸或黑布,使光敏二极管的光信号接收窗口对准光源,然后观察其正、反向电阻值的变化。

正常时,正、反向电阻值均应变小,阻值变化越大,说明该光敏二极管的灵敏度越高。

  2.电压测量法 将万用表置于1V直流电压档,黑表笔接光敏二极管的负极,红表笔接光敏二极管的正极、将光敏二极管的光信号接收窗口对准光源。

正常时应有0.2~0.4V电压(其电压与光照强度成正比)。

  3.电流测量法 将万用表置于50μA或500μA电流档,红表笔接正极,黑表笔接负极,正常的光敏二极管在白炽灯光下,随着光照强度的增加,其电流从几微安增大至几百微安。

  (八)激光二极管的检测

  1.阻值测量法 拆下激光二极管,用万用表R×1k或R×10k档测量其正、反向电阻值。

正常时,正向电阻值为20~40kΩ之间,反向电阻值为∞(无穷大)。

若测得正向电阻值已超过50kΩ,则说明激光二极管的性能已下降。

若测得的正向电阻值大于90kΩ,则说明该二极管已严重老化,不能再使用了。

  2.电流测量法 用万用表测量激光二极管驱动电路中负载电阻两端的电压降,再根据欧姆定律估算出流过该管的电流值,当电流超过100mA时,若调节激光功率电位器(见图4-76),而电流无明显的变化,则可判断激光二极管严重老化。

若电流剧增而失控,则说明激光二极管的光学谐振腔已损坏。

  (九)变容二极管的检测

  1.正、负极的判别 有的变容二极管的一端涂有黑色标记,这一端即是负极,而另一端为正极。

还有的变容二极管的管壳两端分别涂有黄色环和红色环,红色环的一端为正极,黄色环的一端为负极。

  也可以用数字万用表的二极管档,通过测量变容二极管的正、反向电压降来判断出其正、负极性。

正常的变容二极管,在测量其正向电压降时,表的读数为0.58~0.65V;测量其反向电压降时,表的读数显示为溢出符号“1”。

在测量正向电压降时,红表笔接的是变容二极管的正极,黑表笔接的是变容二极管的负极。

  2.性能好坏的判断 用指针式万用表的R×10k档测量变容二极管的正、反向电阻值。

正常的变容二极管,其正、反向电阻值均为∞(无穷大)。

若被测变容二极管的正、反向电阻值均有一定阻值或均为0,则是该二极管漏电或击穿损坏。

  (十)双基极二极管的检测

  1.电极的判别将万用表置于R×1k档,用两表笔测量双基极二极管三个电极中任意两个电极间的正反向电阻值,会测出有两个电极之间的正、反向电阻值均为2~10kΩ,这两个电极即是基极B1和基极B2,另一个电极即是发射极E。

再将黑表笔接发射极E,用红表笔依次去接触另外两个电极,一般会测出两个不同的电阻值。

有阻值较小的一次测量中,红表笔接的是基极B2,另一个电极即是基极B1。

  2.性能好坏的判断 双基极二极管性能的好坏可以通过测量其各极间的电阻值是否正常来判断。

用万用表R×1k档,将黑表笔接发射极E,红表笔依次接两个基极(B1和B2),正常时均应有几千欧至十几千欧的电阻值。

再将红表笔接发射极E,黑表笔依次接两个基极,正常时阻值为无穷大。

  双基极二极管两个基极(B1和B2)之间的正、反向电阻值均为2~10kΩ范围内,若测得某两极之间的电阻值与上述正常值相差较大时,则说明该二极管已损坏。

  (十一)桥堆的检测

  1.全桥的检测 大多数的整流全桥上,均标注有“+”、“-”、“~”符号(其中“+”为整流后输出电压的正极,“-”为输出电压的负极,“~”为交流电压输入端),很容易确定出各电极。

  检测时,可通过分别测量“+”极与两个“~”极、“-”极与两个“~”之间各整流二极管的正、反向电阻值(与普通二极管的测量方法相同)是否正常,即可判断该全桥是否已损坏。

若测得全桥内鞭只二极管的正、反向电阻值均为0或均为无穷大,则可判断该二极管已击穿或开路损坏。

  2.半桥的检测 半桥是由两只整流二极管组成,通过用万用表分别测量半桥内部的两只二极管的正、反电阻值是否正常,即可判断出该半桥是否正常。

  (十二)高压硅堆的检测

  高压硅堆内部是由多只高压整流二极管(硅粒)串联组成,检测时,可用万用表的R×10k档测量其正、反向电阻值。

正常的高压硅堆,其正向电阻值大于200kΩ,反向电阻值为无穷大。

若测得其正、反向均有一定电阻值,则说明该高压硅堆已软击穿损坏。

  (十三)变阻二极管的检测

  用万用表R×10k档测量变阻二极管的正、反向电阻值,正常的高频变阻二极管的正向电阻值(黑表笔接正极时)为4.5~6kΩ,反向电阻值为无穷大。

若测得其正

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 成人教育 > 远程网络教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1