最新新苏教版五年级数学下册第五单元分数加法和减法教案.docx
《最新新苏教版五年级数学下册第五单元分数加法和减法教案.docx》由会员分享,可在线阅读,更多相关《最新新苏教版五年级数学下册第五单元分数加法和减法教案.docx(30页珍藏版)》请在冰豆网上搜索。
最新新苏教版五年级数学下册第五单元分数加法和减法教案
第五单元分数加法和减法
第一课时异分母分数加、减法
教学目标:
1、使学生经历探索异分母分数加、减法计算方法的过程,能正确计算异分母分数的加、减法
2、使学生在联系已有的知识经验探索异分母分数加、减法的过程中,进一步体会数学知识之间的内在联系,感受“转化”思想在解决新的计算问题中的价值,发展数学思考
3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功学习的乐趣,增强学好数学的信心
教学流程:
一、激活旧知
1、观察下面各题是怎样计算的,判断计算是否正确,并说明理由。
65-2=450.03+0.4=0.073元+5角=8元、
让学生判断计算是否正确,说说错在哪里。
提问:
联系三道题的错误想一想,加、减法计算应该注意什么?
说明:
加减计算要对齐数位,或统一单位,这说明相同单位的数才能直接相加减,不管是数还是量,单位不同就不能直接相加减。
这是加、减法的基本原理。
2、口算下面各题的得数。
2/7+4/7=4/8+3/8=4/5+1/5=7/9-2/9=
让学生口算得数并呈现结果。
提问:
这些分数加法和减法是怎样算的?
为什么只要把分子相加减,分母不变?
说明:
这里每题的算式分母相同,也就是分数单位相同,可以直接加减。
计算时只要把几个分数单位和几个分数单位直接相加减,得出是几个分数单位,所以只要分子相加减,分母不变。
这些是我们已经会计算的分数加减法。
2、探究算法
1、学习例题。
(1)出示例题,了解题意。
提问:
应该怎样列算式?
提问:
这个算式跟上面的有什么不同?
说明:
以前我们学习的分数加减法,分母是相同的,是同分母分数加减法;这个算式的分母是不相同的,是异分母分数加法。
我们今天要学习的就是异分母分数加减法。
(2)引导:
从分母不同你想到了什么?
能不能直接相加?
为什么?
说明:
现在发现异分母分数分母不同,就是分数单位不同,不能直接相加。
引导:
那怎样算呢?
请大家用长方形纸折一折,涂色表示出1/2+1/4的和,看看得数应该是多少,想想可以怎样计算。
学生操作、思考,教师巡视、指导。
交流:
得数应该是多少?
你是怎样看出的?
仔细观察,为什么得数的分母会是4、分子会是3呢?
想想这道加法可以怎样计算,把你的想法和同桌交流。
交流:
可以怎样算?
你是怎样想的?
让学生按自己的想法独立填空计算,求出得数。
(2)交流:
怎样算的?
为什么要把1/2化成2/4后再计算?
说明:
1/2+1/4因为分母不同,不能直接相加,但从这个长方形看,1/2+1/4实际上就是2/4+1/4,这样就可以算出是3/4。
所以计算时,可以先转化成2/4+1/4,算出得数是3/4。
(4)引导:
观察计算过程,你觉得异分母分数加法要怎样计算?
为什么要先通分?
指出:
1/2+1/4不能直接相加,我们应用通分,把异分母分数转化成同分母分数,这样就成为已经学过的计算,然后按同分母分数的方法算出得数。
2、完成“试一试”。
(1)出示“试一试”,让学生计算,要求得数能约分的要约分。
学生计算,指名板演,教师巡视。
交流:
5/6-1/3怎样算的?
约分是怎样想的?
1-4/9是怎样算的?
(2)引导:
这样计算到底对不对呢?
我们可以检验一下。
你会验算吗?
让学生验算。
交流:
你是怎样验算的?
说明:
用差加减数,结果等于被减数,说明上面的减法计算的算法是正确的。
3、小结。
提问:
你能说说异分母分数加减法要怎样计算吗?
指出:
异分母分数加减法要先通分,再按同分母分数加减法的方法计算;结果能约分的要约分。
3、巩固练习
1、做练习十二第1题。
让学生涂色写得数。
呈现结果并交流:
根据涂色,1/5+3/5是怎样得出4/5的?
从图上看,1/4+3/8实际上是看作哪两个数相加的?
为什么要这样算?
指出:
从图上看,同分母分数相加,只要直接相加;异分母分数相加,要通分成同分母分数才能计算。
2、做“练一练”第1题。
学生独立计算,指名两人板演。
集体校对,说说前两题是怎样算的,第三、四小题要注意什么。
3、做“练一练”第2题。
学生独立完成。
交流:
你是怎样算的?
4、做练习十二第4题。
学生独立读题、解答。
交流:
说说每个问题你是怎样解决的,并说说你的想法。
小军家离学校的距离,为什么用1-4/5计算?
4、课堂小结
1、通过这节课的学习,你有了哪些收获和体会?
2、布置作业:
练习十二第2、3题。
第二课时连加、连减、加减混合
教学目标:
1、使学生联系具体的问题情境,理解并掌握分数加减混合运算的运算顺序,能正确进行分数加减混合运算。
2、使学生能运用分数加减解决一些简单的实际问题,进一步提高解决实际问题的能力,发展数学应用意识。
3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功学习的乐趣,增强学好数学的信心。
教学重点:
能正确计算分数加减混合运算
教学流程:
1、创设情境,学会计算
1、学习例2
(1)创设情境,列出算式。
出示例2,了解题意。
提问:
题里知道什么条件,要求什么问题?
月季花面积占1/4,杜鹃花面积占1/3,是把哪个数量看作单位“1”的?
要求草坪面积占几分之几,怎样列式?
为什么要用“1”作被减数?
说说你是怎样想的。
说明:
题里把花园面积看作单位“1”,在列式时,可以用“1”作被减数?
说说你是怎样想的。
说明:
题里把花园面积看作单位“1”,在列式时,可以用“1”作被减数去减两个部分的面积1/4和1/3,剩下的就是草坪面积占几分之几。
提问:
还可以怎样列式?
(2)学生计算。
引导:
这两个算式分别是分数连减和加减混合,你会计算吗?
请你独立计算,填写出计算过程,算出得数。
交流:
没有括号的算式怎样算的?
算式里的1是转化成哪个分数算的?
再减1/3时是怎样算的?
还可以怎样算?
这样算是怎样先的?
公分母是怎样确定的?
整理:
计算没有括号的算式,一种方法是从左往右分步计算,先根据前两个数相减算出3/4,再减去1/3;另一种方法是一次通分计算,题里两个减数的分母是4和3,通分的公分母应该是12,所以把1转化成12/12,然后把分子连减,分母不变,算出得数。
有括号的算式是怎样计算的?
为什么先算1/4+1/3?
说明:
分数加减两步计算,和整数一样,有括号的要先算括号里的.
小结:
你发现分数加减两步计算按什么顺序计算?
这两个算式有什么联系?
2、完成“试一试”。
出示“试一试”。
引导:
这道题是分数的连加,你想怎样算呢?
先想一想,再用你自己想到的方法算一算。
交流:
你是怎样算的?
这样计算的过程是怎样的?
说说这里是怎样通分的。
有没有不同算法?
这样计算的过程又是怎样的呢?
这又是怎样通分的呢?
强调:
像这样的算式,可以分步计算,也可以一次通分计算。
用一次通分计算要方便一些。
要注意计算的结果能约分的要约分。
3、小结。
提问:
上面我们计算的是怎样的算式?
你知道分数连加、连减和加减混合按怎样的顺序算吗?
说明:
分数连加、连减的加减混合,按整数的运算顺序算。
如果没有括号,也可以一次通分计算;这样算的关键是正确的确定公分母是多少,一般把最大的分母翻倍。
2、练习巩固
1、做“练一练”第1题。
学生计算,指名板演。
交流:
第一小题怎样算的?
有没有不同算法?
一次通分时怎样找公分母的?
说明:
没有括号可以分两步计算,也可以一次计算,通常一次通分计算比较方便。
提问:
第二小题先算什么?
1看成几分之几减的?
说明:
结果要约分。
2、做“练一练”第2、3题。
学生独立完成,指名板演。
交流:
第2题列式为什么用1作被减数?
说说你的理由。
检查算式和计算,确认结果;有错的订正。
3、做“练一练”第7题。
(1)学生独立完成,教师巡视。
交流:
第
(1)题是怎样算的?
结果是多少?
第
(2)题是怎样算的?
(2)还能提出什么问题?
学生提问题,引导归纳可以提哪几类问题。
3、全课小结
今天学习了什么内容?
你有哪些收获?
计算时要注意些什么?
作业:
练习十二第5、6题。
5
第三课时分数加、减法练习
(1)
教学目标:
1、使学生进一步掌握正确、灵活地计算异分母分数的加、减法。
初步学会估算异分母分数的加、减法。
2、使学生进一步在解决新的计算问题中,发展数学思考。
3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功学习的乐趣,增强学好数学的信心。
教学重难点:
能根据实际情况灵活地估算异分母分数的加、减法。
教学流程:
一、引入课题,明确内容
谈话:
我们已经学会了异分母分数加减法计算,今天这节课重点练习异分母分数的加减法。
通过练习,要进一步理解异分母分数计算的方法,能正确计算,提高计算能力。
同时还要通过计算发现一些规律,并且能应用计算解决一些简单的实际问题。
2、计算练习,发展技能
1、说出每组数中分母的最小公倍数。
4/9和1/65/6和1/85/9和1/32/3和2/5
让学生直接说出每组分母的最小公倍数,并说说方法。
2、计算每组分数加减的得数。
4/9+1/65/6+1/85/9+1/32/3+2/5
4/9-1/65/6-1/85/9-1/32/3-2/5
呈现把每组分数组成的加减法算式,要求学生按组计算。
检查每组分数的加减计算,前两组说说怎样算的,后两组说说公分母各是多少。
提问:
异分母分数加减法是怎样算的?
3、做练习十二第8题。
(1)出示第8题,要求学生按题组计算得数。
交流得数,教师板书呈现。
要求观察、比较:
每组里加减的两个分数,有没有什么特点?
每组里各个算式的得数跟算式中的两个分数有什么关系?
比较这些算式和得数,你有什么发现?
和同桌交流。
学生观察、比较和讨论、交流,教师巡视、倾听、指导。
交流:
你有没有发现什么?
和大家说一说。
引导交流并点拨、完善,得出规律:
分母只有公因数1,分子都是1的两个分数相加减,得数的分母是两个分母的积,分子是两个分母的和或差。
(2)口算下面各题。
1/2+1/71/3+1/81/5+1/31/9+1/4
1/5-1/61/3-1/71/5-1/91/6-1/7
结合口算,选择两题说说是怎样算的。
说明:
我们在计算中发现了规律,按规律计算就比较方便。
所以学习数学,就要注意能发现规律。
让发现的规律成为方法,就方便我们解决问题。
(3)先计算下列加减法,再按上面规律写得数,比比两次的得数,看看能发现什么。
1/8+1/101/6+1/81/3+1/91/4+1/8
1/8-1/101/6-1/81/3-1/91/4-1/8
学生计算、比较,教师巡视。
交流:
当两个分母有一一般关系或倍数关系时,有没有这个规律?
但结果是不是最简分数?
指出:
实际上,不管分母是怎样的关系,只要分子是1,都具有这样的规律。
当分母只有公因数1时,可以直接按规律写出得数;当两个分母是一般关系或有倍数关系时,按规律写出的结果还要约分。
在实际计算中,大家可以根据算式的特点灵活应用计算方法。
4、完成“练习十二”第9题估计。
让学生观察、思考,哪些算式得数大于1/2?
交流:
哪几题的得数大于1/2?
你是怎样想的?
5、做练习十二第10题。
学生解方程,指名板演。
检查解方程的过程和结果。
3、解决问题,提升能力
1、做练习十二第11题。
让学生列式解答。
交流:
你是怎样解决的?
2、做练习十二第12题。
(1)学生观察,要求估计各占货架的几分之几,记录在图上。
交流:
各占货架面积的几分之几?
你是怎样看的?
让学生根据问题口头列出算式,计算得数。
交流算式和结果。
(2)提问:
你还能提出哪些问题?
能说说这里可以提出怎样的问题吗?
4、练习小结,完成作业
1、小结。
提问:
你在这节课有哪些收获和体会。
2、布置作业。
完成练习十二第9题。
第四课时分数加、减法练习
(2)
教学目标:
1、使学生进一步掌握分数加减混合运算。
2、使学生了解整数加法的运算律和减法的运算性质,同样适用于分数加减法,并能应用运算律或运算性质进行一些分数加减法的简便运算。
3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功学习的乐趣,增强学好数学的信心。
教学重点:
能正确应用运算律或运算性质进行一些分数加减法的简便运算
教学流程
一、谈话引入
谈话:
今天这节课,我们继续练习分数加减法,重点练习分数的连加、连减和加减混合。
通过练习,要进一步掌握分数连加、连减和加减混合的运算顺序,发现加法运算律和减法规律的应用,能用简便方法计算一些算式的结果,提高运算能力;能应用加减运算解决一些简单的两步计算实际问题。
2、基本题练习
1、做练习十二第13题。
学生直接写出得数。
交流得数,结合选择说说算法。
2、计算下面各题。
1/4+1/6+1/31-2/5-1/10
7/8-3/4+2/58/9-(1/3+1/6)
学生计算,指名四人板演。
检查过程,没有括号的算式,说说还可以怎样算,确认结果。
提问:
分数加减两步计算的运算顺序是怎样的?
没有括号的哪种算法可以方便一些?
说明:
分数加减法两步计算的运算顺序和整数是一样的。
在计算没有括号的算式时,可以一次通分,把分子相加减,分母不变,直接计算得数。
3、发展性练习
1、做练习十二第14题。
让学生按题组分别计算,指名两人板演。
检查校正,确认算法和得数。
比较,每组的两题有什么相同和不同?
这两组算式的结果说明符合过去的什么知识?
你能把加法的运算律具体说一说吗?
指出:
整数加法的结合律和交换律,对分数加法同样适用。
2、做练习十二第15题。
比较:
你能说说每组里的两题有什么相同和不同吗?
你估计得数会不会相等?
练习:
现在请大家算一算,看看得数到底是不是相等。
检查校正,确认结果,比较得数。
提问:
比较每组的两个算式和得数,你有什么想说的?
减法运算的规律是什么?
指出:
整数减法的规律,同样适用于分数减法。
3、做练习十二第16题。
引导:
知道了运算律或规律,有什么用处?
请看第16题,想想计算各题有没有简便的方法,怎样简便就怎样算。
学生计算,教师巡视。
交流:
你是怎样算的?
为什么这样算要简便一些?
你从这里得到什么启发?
说明:
在分数加减法计算时,可以先观察数据的特点。
如果应用运算律或计算规律,能把其中的数通过计算先凑成整数,就可以用简便计算的方法计算结果。
4、加减法应用
1、做练习十二第17题。
学生读题,交流条件和问题。
提问:
这道题可以怎样解决?
为什么用“1”作被减数?
说明:
这里求送画的学生占全班的几分之几,把全班人数看作单位“1”,去掉两部分各占的几分之几,剩下的就是问题的结果。
所以被减数是“1”。
让学生列式计算。
说说算式中每一步表示的意思,结果是多少。
2、做练习十二第18题。
学生读题,独立列式解答。
交流:
你是怎样计算的?
有不同想法吗?
比较这两个解答的算式,哪个是正确的?
引导:
为什么被减数不能用“2/3”,要用“1”?
3、完成思考题。
让学生读题,独立思考、求出结果。
如有困难,可以画图想一想。
交流方法,说明理由,明确:
第一次烧掉全长的1/5,还剩全长的4/5,第二次烧掉剩下的一半就是全长的2/5,用1-1/5-2/5=2/5。
5、课堂小结
提问:
通过本节课的练习,你有哪些收获?
有什么体会?
第六单元圆
第一课时圆的认识
教学目标:
1.知识与技能目标:
使学生认识圆,知道圆各部分的名称;掌握圆的特征,理解直径和半径的相互关系。
初步学会用圆规画圆。
2.过程与方法目标:
通过分组学习,动手操作,主动探索等活动,初步培养学生的合作意识和创新意识,以及抽象、概括等能力,进一步发展学生的空间观念。
3.情感与价值观目标:
通过学习,提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用
教学重点:
圆的各部分的名称,圆的基本特征,学会用圆规画圆
教学过程
1、引入新课
1、观察图形。
出示图形:
三角形、长方形、梯形、平行四边形和五边形等多边形。
让学生说说各是什么图形。
2、谈话引入。
谈话:
上面这些嗾使线段围成的平面图形。
以前学习、认识这些图形时,都是通过观察、操作、画图等一些方法认识它们的特征的。
今天,我们还是通过这些活动来认识新的平面图形——圆。
学习时要主动观察、操作,积极比较、思考,获得对圆的特征的认识。
2、学习新知
1、学习例1.
(1)初步感知。
出示例1主题图。
引导:
圆形在生活中是经常见到的,我们早一年级时也认识过圆的图形。
现在请观察图中这些物体和图案,看看能找出哪些是圆形的,指一指、说一说。
交流:
你在图中找出的图形有哪些?
引导:
上面说到的形状都是圆形,这样的图形就是圆。
请你把圆和以前学过的三角形、长方形、四边形等多边形比一比,有什么相同和不同的地方?
指出:
圆和多边形比,都是围成的平面图形。
不同的是:
多边形是由线段围成的,有角和顶点;圆是由曲线围成的平面图形。
(2)体验特征。
引导:
圆是一个曲线图形,那你能想办法画一个圆吗?
请你利用准备的材料,试着画一个圆,和同学交流你的画法。
交流:
你是怎样画圆的?
结合画法交流,引导思考:
用图钉和线画圆时,要注意什么?
图钉移动位置能画成圆吗?
为什么线的长短不能改变?
用圆规画圆要注意什么?
改变两脚间的距离能不能画成圆?
你觉得用线画圆和圆规画圆有什么共同的地方?
说明:
现在发现,用线画圆和圆规画圆共同的地方是:
中心固定的一个点不能移动,这个点到笔尖的距离不能改变,也就是到圆这条曲线上的长度要始终保持不变。
(3)圆规画圆
引导:
了解了圆规画圆的注意点,你也能用圆规画圆吗?
大家拿出圆规看一看,圆规有两个角,一个是针尖,是用来固定一点的;一个是笔芯,是用来画圆的;上面的手柄是用手操作的。
现在请你在纸上自己画一个圆。
交流:
用圆规怎样画圆?
示范:
现在老师按照大家交流的画法画一个圆,请注意观察,一边观察一边思考:
画圆要注意些什么?
我们把圆规两脚分开,针尖先固定一点,旋转圆规用笔芯画圆。
提问:
(圆画出大半后停顿)这样继续画下去,一定能画成圆吗?
为什么?
如果改变两脚间的距离呢?
说明:
只要保持两脚间的距离不变,就能画出一个圆。
提问:
你觉得画圆时要注意些什么?
指出:
画圆时,针尖不能移动,需要固定一点;圆规两脚间距离不能改变,也就是两脚间要保持定长;把圆规旋转一周,就画成一个圆。
让学生按总结的方法再画一个圆。
说明:
我们用圆规画出的这条曲线就是圆,如果一个点在曲线上,就说这个点在圆上;如果在里面,就叫在圆内;如果在外面,就叫早圆外。
想一想,圆上的点到固定点的距离都相等吗?
为什么?
(4)认识名称。
说明:
我们用圆规画圆时,针尖固定的一点是圆心,通常用字母O表示。
教师在圆上任意点出一个点,在圆心和这个点之间连一条线段。
提问:
这是怎样的一条线段?
试着说说看。
说明:
我们把连接圆心和圆上任意一点的线段,叫圆的半径,通常用字母r表示。
提问:
这个圆的半径,实际上就是哪个长度?
引导:
你能在自己画的圆里标出圆心、画出半径,并且分别用字母表示吗?
学生在圆上表示,教师巡视。
交流:
你是怎样表示的?
把你表示的呈现给大家看一看。
引导:
在圆里,还有一种叫直径的线段。
想一想,你认为怎样的线段就是直径?
按你的想法在圆里画出来。
提问:
你是怎样画的?
谁到老师画的这个圆上画一画?
结合学生画直径提问:
能不能这样画?
(不经过圆心)能不能画到这里?
(端点不在圆上)那要画怎样的线段才是直径?
说明:
像这样经过圆心并且两端都在圆上的线段就是圆的直径,通常用字母d表示。
让学生在图上用字母d表示直径。
小结:
你知道了关于圆的哪些名称?
能结合你画的圆,和同桌互相说说什么是圆心、半径和直径吗?
结合图形小结:
大家看圆来说一说:
画圆时固定的这一点,叫作——(圆心);连接圆心和圆上任意一点的线段,叫作——(半径);通过圆心并且两端都在圆上的线段,叫作——(直径)。
半径的长实际就是画圆时圆规两脚之间的——(距离)。
2、完成“练一练”。
(1)做“练一练”第1题。
让学生分别描出各个圆的半径和直径,量出长度,记录在圆里。
交流:
哪些是半径,哪些是直径?
把你描出的呈现给大家看一看,并且说说长度。
学生交流,结合提问其中没有描出的为什么不是半径或直径,并交流半径和直径的长度。
提问:
圆的半径长度,就是画圆时什么的长度?
那你能根据半径或直径的长度画圆吗?
(2)做做“练一练”第2题。
明确画圆要求。
提问:
圆规上怎样确定半径?
请哪位说一说。
让学生画圆,并用字母表示圆心、半径和直径,然后交流画出的圆。
提问:
你在圆上任意找一个点,它到圆心的距离是几厘米?
为什么?
再找一点,这一点到圆心的距离是多少呢?
你是怎样想的?
圆上还有哪些点到圆心的距离也是5厘米?
3、学习例2.
(1)出示例2,了解要思考哪些问题。
在同一个圆内,
有多少条半径,多少条直径?
半径的长度有什么特点?
直径呢?
直径的长度和半径的长度有什么关系?
要求学生画一个圆,折一折、画一画、比一比,根据问题想一想,看看能有什么发现。
把自己的发现先和同桌互相交流。
学生操作,教师巡视、指导。
(2)交流:
能围绕上面的问题,说说你有哪些发现吗?
提问:
一个圆内有无数条半径、无数条直径,你是怎么发现的?
半径相等、直径相等又是怎样知道的呢?
不同圆里的半径会相等吗?
直径呢?
那半径相等、直径相等有什么条件?
追问:
你能根据画圆的方法,说一说同一个圆里半径为什么会相等吗?
指出:
同一个圆内半径都相等,说明了圆上任意一点到圆心的距离都相等,这是圆的主要特征。
(3)提问:
为什么直径长度是半径的2倍,半径的长度是直径的一半?
说说你的想法。
这个圆直径的长度会是那个圆半径的2倍吗?
需要符合什么要求?
(同圆或等圆)
你能用字母式子表示直径和半径长度间的这种关系吗?
(4)提问:
圆是轴对称图形吗?
圆有多少条对称轴?
你是怎样想的?
(5)小结例2.
引导:
通过例2的学习,能完整地说说你对圆都知道了些什么吗?
4、阅读“你知道吗”。
让学生阅读内容、欣赏画面。
交流:
通过阅读,你知道了些什么?
说明:
“一中同长”,概括了圆的最本质的特征。
3、练习巩固
1、做练习十三第1题。
让学生填表、交流。
填表应用的什么知识?
说明:
根据直径与半径长度的关系,知道直径就能求出半径,知道半径就能求出直径。
2、做练习十三第2题。
让学生根据要求画圆,并交流呈现画成的圆。
提问:
已知长度都是3厘米,为什么画出的圆不一样大小?
那第二个圆的半径是多少厘米?
3、做练习十三第3题。
让学生先量半径,再画圆。
交流在课本上画出的圆,要求学生量出自己画的两个圆的半径。
提问:
比比两个圆的半径,想想哪个圆的半径长一些?
要把圆画得大一些或小一些,跟圆的什么有关系?
指出:
圆的半径长度不同,画出的圆的大小就不一样。
4、课堂总结
这节课你学习了什么?
你获得哪些收获?
还有哪些体会可以交流?
第二课时圆的认识练习
教学目标:
1、使学生进一步认识圆的特征,进一步掌握圆规画圆的方法;了解圆心、半径与圆的位置、大小之间的联系,能用圆的知识解释一些简单的实际现象。
2、使学生通过观察、操作和比较等活动,加深对圆的认识,提高操作实践的能力,培养比较、抽象及概括等思维能力,进一步发展空间观念。
3、使学生主动参与操作、实践等活动,体验圆在生活实际中的应用,体验数学知识的价值和应用。
教学过程
1