初中数学圆的解题方法总结.docx
《初中数学圆的解题方法总结.docx》由会员分享,可在线阅读,更多相关《初中数学圆的解题方法总结.docx(6页珍藏版)》请在冰豆网上搜索。
初中数学圆的解题方法总结
初中数学圆的解题方法总结
情形1 . 弦
若圆的题目中出现关于弦的相关知识点,要想到弦相关的定理和一些性质,垂径定理、弦心距、勾股定理等.
例1.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F
(1)求证:
FC=FB;
(2)若CD=24,BE=8,求⊙O的直径.
分析:
(1)根据两平行弦所夹的弧相等,得到弧PC=弧BD,然后由等弧所对的圆周角相等及等角对等边,可以证明FC=FB.
(2)连接OC,在Rt△OCE中用勾股定理计算出半径,然后求出直径.
证明:
(1)∵PD∥CB,
∴弧PC=弧BD,
∴∠FBC=∠FCB,
∴FC=FB.
(2)解:
如图,连接OC,
设圆的半径为r,在Rt△OCE中,
OC=r,OE=r﹣8,CE=12,
∴r²=(r﹣8)²+12²,
解方程得r=13.所以⊙O的直径为26.
情形2 . 直径
出现直径时,要联想圆心角、圆周角等性质,构造等腰三角形、直角三角形等图形。
例2.如图,在⊙O中,将弧BC沿弦BC所在直线折叠,折叠后的弧与直径AB相交于点D,连接CD.
(1)若点D恰好与点O重合,则∠ABC=______°;
(2)延长CD交⊙O于点M,连接BM.猜想∠ABC与∠ABM的数量关系,并说明理由.
分析:
(1)根据折叠的性质和圆周角定理解答即可;
(2)作点D关于BC的对称点D',利用对称的性质和圆周角定理解答即可.
证明:
(1)∵若点D恰好与点O重合,
∴∠COD=60°(跳步啦),
∴∠ABC=∠OBC=∠COD=30°;
(2)∠ABM=2∠ABC,
作点D关于BC的对称点D',
连接CD',BD',
∵对称,
∴∠DBC=∠D'BC,DC=D'C,
连接CO,D'O,AC,
∴∠AOC=2∠ABC,
∠D'OC=2∠D'BC,
∴∠AOC=∠D'OC,
∴AC=D'C,
∵DC=D'C,∴AC=DC,
∴∠CAD=∠CDA,
∵AB是直径,∴∠ACB=90°,
∴∠CAD+∠ABC=90°,
设∠ABC=α,
则∠CAD=∠CDA=90°﹣α,
∴∠ACD=180°﹣∠CAD﹣∠CDA=2α,
即∠ACD=2∠ABC,
∵∠ABM=∠ACD,
∴∠ABM=2∠ABC.
情形3:
切线
如果题目给出有切线,我们可以思考添加过切点的半径,连结圆心和切点,利用切线的性质和定理构造出直角或直角三角形,再使用勾股定理解出一些边角关系。
如图,AB是⊙O的弦,半径OE⊥AB,P为AB的延长线上一点,PC与⊙O相切于点C,CE与AB交于点F.
(1)求证:
PC=PF;
(2)连接OB,BC,若OB∥PC,BC=3√2
,tanP=3/4,求FB的长.
分析:
(1)连接OC,根据切线的性质以及OE⊥AB,可知∠E+∠EFA=∠OCE+∠FCP=90°,从而可知∠EFA=∠FCP,由对顶角的性质可知∠CFP=∠FCP,所以PC=PF;
(2)过点B作BG⊥PC于点G,由于OB∥PC,且OB=OC,BC=3√2
,从而可知OB=3,易证四边形OBGC是正方形,所以OB=CG=BG=3,所以BG/PG=3/4,所以PG=4,由勾股定理可知:
PB=5,所以FB=PF﹣PB=7﹣5=2.
证明:
(1)连接OC,
∵PC是⊙O的切线,
∴∠OCP=90°,
∵OE=OC,∴∠E=∠OCE,
∵OE⊥AB,
∴∠E+∠EFA=∠OCE+∠FCP=90°,
∴∠EFA=∠FCP,
∵∠EFA=CFP,
∴∠CFP=∠FCP,
∴PC=PF.
(2)过点B作BG⊥PC于点G,
∵OB∥PC,∴∠COB=90°,
∵OB=OC,BC=3√2,
∴OB=3,
∵BG⊥PC,
∴四边形OBGC是正方形,
∴OB=CG=BG=3,
∵tanP=3/4,
∴BG/PG=3/4,∴PG=4,
∴由勾股定理可知:
PB=5,
∵PF=PC=7,
∴FB=PF﹣PB=7﹣5=2.
情形4:
相交切线
考虑连结圆心和切点,或连结圆心和圆外的一点,或连结两切点。
得出一些特殊的三角形和边角关系,比如全等、相似、垂直、边角关系等。
例4.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.
(1)求边AD、BC的长;
(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?
若存在,求出AP的长;若不存在,请说明理由.
分析:
(1)过D作DF⊥BC于F,设AD=x,则DE=AD=x,EC=BC=x+6,根据勾股定理就到一个关于x的方程,就可以解得AD的长;
(2)△ADP和△BCP相似,有△ADP∽△BCP和△ADP∽△BPC两种情况进行讨论,根据相似三角形的对应边的比相等,就可以求出AP的长.
情形5:
内切圆
过内心作三角形各边的垂线段或者连结圆心到各三角形顶点,构造特殊的边角关系和三角形。
圆心到三角形顶点的连线是角平分线;圆心到三角形三边的距离相等。
如图,AB=AC,CD⊥AB于点D,点O是∠BAC的平分线上一点,⊙O与AB相切于点M,与CD相切于点N
(1)∠AOC=______;
(2)若NC=3,BC=2√5
,求DM的长.
分析:
(1)只要证明OC平分∠ACD,即可解决问题;
(2)由切线长定理可知:
AM=AE,DM=DN,CN=CE=3,设DM=DN=x,AM=AE=y,在Rt△BDC中,根据BC²=BD²+CD²,构建方程即可解决问题.
情形6:
外接圆
一般先构造一条直径,再根据题目的一些条件构造特殊的三角形和边角关系。
如图,⊙O是△ABC的外接圆,PA是⊙O切线,PC交⊙O于点D.
(1)求证:
∠PAC=∠ABC;
(2)若∠BAC=2∠ACB,∠BCD=90°,AB=2√3
,CD=2,求⊙O的半径.
分析:
(1)连接AO延长AO交⊙O于点E,连接EC.想办法证明:
∠B+∠EAC=90°,∠PAC+∠EAC=90°即可解决问题;
(2)连接BD,作OM⊥BC于M交⊙O于F,连接OC,CF.设⊙O的半径为x.求出OM,根据CM^2=OC^2﹣OM^2=CF^2﹣FM^2构建方程即可解决问题.