拉普拉斯变换逆变换.docx
《拉普拉斯变换逆变换.docx》由会员分享,可在线阅读,更多相关《拉普拉斯变换逆变换.docx(32页珍藏版)》请在冰豆网上搜索。
拉普拉斯变换逆变换
第十二章拉普拉斯变换及逆变换
拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自
动控制系统的分析和综合中也起着重要的作用。
我们经常应用拉普拉斯变换进行电路的复频
域分析。
本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用。
第一节拉普拉斯变换
在代数中,直接计算
3
N6.28班781202(1.164)5
是很复杂的,而引用对数后,可先把上式变换为
13
lgNlg6.28-(lg5781lg9.82lg20)-lg1.164
35
然后通过查常用对数表和反对数表,就可算得原来要求的数N。
这是一种把复杂运算转化为简单运算的做法,而拉氏变换则是另一种化繁为简的做法。
、拉氏变换的基本概念
定义12.1设函数f(t)当t0时有定义,若广义积分°f(t)eptdt在P的某一区域内收敛,则此积分就确定了一个参量为P的函数,记作F(P),即
F(P)f(t)eptdt
0(12.1)称(12.1)式为函数f(t)的拉氏变换式,用记号L[f(t)]F(P)表示。
函数F(P)称为f(t)的拉氏变换(Laplace)(或称为f(t)的象函数)。
函数f(t)称为F(P)的拉氏逆变换(或称为F(P)象原函数),记作
11
L[F(P)]f(t),即f(t)L[F(P)]。
关于拉氏变换的定义,在这里做两点说明:
(1)在定义中,只要求f(t)在t0时有定义。
为了研究拉氏变换性质的方便,以后总假定在t0时,f(t)0。
(2)在较为深入的讨论中,拉氏变换式中的参数P是在复数范围内取值。
为了方便起见,本章我们把P作为实数来讨论,这并不影响对拉氏变换性质的研究和应用。
(3)
它是一种积分变换。
拉氏变换是将给定的函数通过广义积分转换成一个新的函数,般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的。
例12.1求斜坡函数f(t)at(t0,a为常数)的拉氏变换。
解:
L[at]0ateptdt
td(ept)
旦ept]°
p
0旦eptdt
p0
aTe
pt]0
a
孑(p0)
、单位脉冲函数及其拉氏变换
在研究线性电路在脉冲电动势作用后所产生的电流时,要涉及到我们要介绍的脉冲函
数,在原来电流为零的电路中,某一瞬时(设为t0)进入一单位电量的脉冲,现要确定电路
上的电流i(t),以Q(t)表示上述电路中的电量,则
Q(t)
0,
1,
0,
0.
由于电流强度是电量对时间的变化率,即
i(t)妙
dt
所以,当t0时,i(t)0;当t0时,
12
t0
t)Q(t)
t
i(0)limQ(0t)Q(0)1im(丄)
t0tt0t
度.为此,引进「
定义12.2
一个新的函数,
这个函数称为
狄拉克函数。
0,
t0
设
(t)
1
—,0
t,当
0时,⑴的极限(t)li叫(t)
0,
t
称为狄拉克(Dirac)
函数,
简称为函数
。
上式说明,在通常意义下的函数类中找不到一个函数能够用来表示上述电路的电流强
当t0时,(t)的值为0;当t0时,(t)的值为无穷大,即⑴
0,
1
(t)dt0—dt
工程技术中,常将函数称为单位脉冲函数
等于1的有向线段来表示,这个线段的长度表示
例12.2求单位脉冲信号(t)的拉氏变换。
解:
根据拉氏变换的定义,有
显然,对任何0,有
1,所以
(t)dt
L[(t)]
0
(t)eptdt
1ept
咱〒0
例12.3现有一单位阶跃输入
解:
L[u(t)]
0u(t)ePtdt
(lim1)e
0
1lim
P
L[
u(t)
(t)]
0,
1,
例12.4求指数函数f(t)eat
解:
L[eat]
atpt
0e8dt
,有些工程书上,将
函数的积分,叫做
函数用一个长度函数的强度。
ptdt
lim0eptdt
0
1lim
P
(1ep)
0()
1lim
P
lim-eptdt
00
Pel1
1。
0,求其拉氏变换。
0
1ept]e]°p
(a为常数)的拉氏变换。
(Pa)t1
edt
0pa
1geptdt
(p0)。
,(P
a),即
L[eat]丄(pa)
Pa
类似可得
p
L[sint]2(P0);L[cost]—2(P0)。
pp
三、拉氏变换的性质
拉氏变换有以下几个主要性质,利用这些性质,可以求一些较为复杂的函数的拉氏变换。
性质12.1(线性性质)若a1,a2是常数,且L[f1(t)]F'p),L[f2(t)]F2(p),则
Lla/dt)a2f2(t)]
证明:
讣戸⑴]a2L[f2(t)]qF")
a2F2(P)
(12.2)
L[aifi(t)a2f2(t)]
例12.5
求函数f(t)
[aifdt)a2f2(t)]e
0
讣[锂)]a2L[f2(t)]
1-(1a
at
)的拉氏变换
ptdta1
aiFi(p)
f1(t)e
0
a2F2(p)
ptdt
a20
f2(t)eptdt
解:
1
L[—(1
a
eat)]】L[1
a
性质12.2(平移性质)
111{L[1]L[eat]}{
a
若L[f(t)]
L[eatf(t)]
at]
P(Pa)
证明:
at
L[ef(t)]
F[p],则
F(pa)(a为常数)
(12.3)
at
e
0
at
位移性质表明:
象原函数乘以e等于其象函数左右平移
例12.6求L[teat],L[eatsint]和L[eatcost]。
1—,L[sint]P
1
(Pa)2'
解因为L[t]
L[teat]
f(t)eptdt
(pa)t
f(t)edt
0
2,L[cost]P
L[eatCOSt](Pa)
性质12.3(滞后性质)若L[f(t)]
证明:
L[f(ta)]e
F[p],
apF(p)
(a0)
F(Pa)
|a|个单位。
2P2,由位移性质即得
p
(12.4)
a
f(t
0
t0时,f(t)
f(ta)eptdt
0
在拉氏变换的定义说明中已指出,当
时,f(ta)0,所以上式右端的第一个积分为
L[f(ta)]
a)eptdt
当ta0(即t分,令ta,
f(ta)eptdt
a
0。
因此,对于函数f(ta),
0,对于第二个积
L[f(t
a)]
p(a)ap
f()ede
f()epdeapF(p)
滞后性质指出:
象函数乘以eap等于其象原函数的图形沿t轴向右平移a个单位。
由于函数f(ta)是当ta时才有非零数值。
故与f(t)相比,在时间上滞后了一个a值,正是这个道理,我们才称它为滞后性质•在实际应用中,为了突出滞后”这一特点,常
在f(ta)这个函数上再乘u(ta),所以滞后性质也表示为
L[u(ta)f(ta)]eapF(p)
例12.7求L[u(ta)]。
解:
因为L[u(t)]
1
,由滞后性质得
L[u(t
ap1
a)]e
p
p
例12.8求L[ea(t
)u(t
)]。
解:
因为L[eat]
1
,所以
L[ea(t
)u(t
1
)]ep-,(pa)
p
a
pa
0,t
0
例12.9已知f(t)
c,0
ta
,求L[f(t)]。
2c,at3a
0,t3a
解:
f(t)可用单位阶梯函数表示为f(t)cu(t)cu(ta)2cu(t3a),于是
L[f(t)]L[cu(t)cu(ta)2cu(t3a)
c-eap2ce3ap-(1eap2e3ap)
PPPP,
由拉氏变换定义来验证:
a3a
L[f(t)]ceptdt2ceptdt
0
9(1
a
eap2eap
2e3ap)-(1eap2e3ap)
p
p。
性质12.4(微分性质)
若L[f(t)]
F[p],并设f(t)在[0,+)上连续,
f'(t)为分
段连续,则
L[f(t)]
pF(p)f(0)
(12.5)
证明:
由拉氏变换定义及分部积分法,得
L[f(t)]f(t)eptdt[f(t)ept]oPf(t)eptdt
00
可以证明,在L[f(t)]存在的条件下,必有limf(t)ept0。
因此,
t
L[f(t)]0f(0)pL[f(t)]pF(p)f(0)
微分性质表明:
一个函数求导后取拉氏变换等于这个函数的拉氏变换乘以参数p,再
减去函数的初始值。
应用上述结果,对二阶导数可以推得
L[f(t)]
pL[f(t)]
f(0)p{pF(p)f(0)}
f(0)
p2F(p)
{pf(0)
f(0)}
同理,可得
L[f
32
(t)]pF(p){pf(0)
pf(0)
f(0)}
以此类推,
可得
L[f(n)(t)]
pnF(p){pn1f(0)pn
2f(0)
f(n1)
(0)}
(12.6)
由此可见,f(t)各阶导数的拉氏变换可以由p的乘方与象函数F[p]的代数式表示出
来•特别是当初值f(0)
L[f(n)(t)]pnF(p),利用这个性质,可将f(t)的微分方程转化为例12.10利用微分性质求
解:
令f(t)(12.6)式,得
L[
f'(0)f''(0)f(n1}
(0)0时,有更简单的结果
(n1,2,)
F(p)的代数方程。
t]。
移项化简得
利用上述结果,
sint,
2・
sin
cost
L[cost]
L[sint]和L[cos
tf(0)0,f'(0),f"(0)
则f(t)
t]L[f
2L[sin
sin
(t)]
t]
L[sint]
2sin
(12.7)
t,由
2
pL[f(t)]pf(0)f(0)
2
pL[sint],
-(sint)'及(12.5)式,可得
L[^(sint)]丄L[(sint)]丄{pL[sint]
性质12.5(积分性质)
-{pW
p
若L[f(t)]
t
L[
0
20}
F(p)
f(x)dx]
sin0}
p
22
p.
(p0),且设f(t)连续,则
F(p)
p
(12.8)
证明:
令(t)
L[(t)]pL[(t)]
F(p)
t
of(x)dt,显见
(0),而L[(t)]L[f(t)]F(p),所以有
tt1
pL[(t)]pL[0f(x)dx],即L[0f(x)dx]F(p)。
00p
(0)0,
且因'(t)f(t),由微分性质,
积分性质表明:
一个函数积分后再取拉氏变换,等于这个函数的象函数除以参数例12.11求L[tn]解:
因为
t
t
0
(n是正整数)。
所以由
般地,有
1dx,t2
t
2xdx,
0
tn
(12.8)
L[t]
L[t2]
L[t3]
L[tn]
式即得
t
L[1dx]
0
L[2
L[3
L[n
0
1
L[1]7
1!
pp
2,p
2L[t]
2!
p
3,p
2
x]刈]
3!
x]
p
4p
2x
t
3x2dx
t
xdx]
0
t3
nL[tn
n1
xdt]
n!
n1
p
t
n1」nxdx
0
性质
12.6
若
L[f(t)]
F[p],则a
0时
L[f(at)]
1
f(Q
a
a
性质
12.7
若
L[f(t)]
F[p],则
L[tnf(t)](
1)n
F(n)(
p)
性质
12.8
若
L[f(t)]
F[p],且lim
f(t)
存在,
则
t0
f⑴]
L[
F(p)dp
p
(12.9)
(12.10)
(12.11)
例12.12求L[tsint]。
dt
sint
0t这个结果用原来的广义积分的计算方法是得不到的。
现将拉氏变换的八个性质和在实际应用中常用的一些函数的象函数分别列表如下:
表12.1拉氏变换的性质
序号
设L[f(t)]F(p)
1
L[aj1(t)a2f2(t)]亂厲⑴]a2L[f2(t)]
2
L[eatf(t)]F(pa)
3
L[f(ta)u(ta)]eapF(p)(a>0)
4
L[f'(t)]pF(p)f(0)
L[f(n)(t)]pnF(p)[pn1f(0)pn2f'(0)...f(n1)(0)]
5
L[tf(x)dx]
0p
6
L[f(at)丄F(上)
aa(a>o)
7
L[tnf(t)]
(1)nF(n)(p)
8
L[孕]F(p)dp
tp
表12.2常用函数的拉斯变换表
序号
f(t)
F(p)
1
(t)
1
2
u(t)
1p
3
t
1
2p
4
tn(n1,2,...)
n!
n1p
5
eat
1
pa
6
1eat
a
p(pa)
7
teat
1
(pa)2
8
tneat(n1,2,)
n!
(pa)
9
sint
22
p
10
cost
p
22p
11
sin(t)
psincos
22p
12
cos(t)
pcossin
~22~
p
13
tsint
2p
(p22)2
14
sinttcost
23
222(p)
15
tcost
22p
(p22)2
16
eatsint
(pa)22
17
eatcost
pa
(pa)22
18
1
—(1cosat)a
1
22
p(pa)
19
_atbt
ee
ab
(pa)(pb))
20
2卩
1_
p
21
1
77
亠
Jp
习题
12.1
(1)
f(t)
4te
(2)
f(t)
t2
(3)
f(t)
teat
(4)
f(t)
sin(t)(
1.求下列函数的拉氏变换
是常数)
2.求下列题中函数的拉氏变换
(1)3e4t
(2)
(3)f(t)
1,0t
1,t4
(4)
5sin2t3costsint,0t
f(t)
t,t
0,
(5)f(t)1,
(6)f(t)tneat
第二节
拉普拉斯逆变换
f(t)求它的象函数F(p)的问题.运算法的另一面f(t),这就是拉斯逆变换问题.在控制工程中,求拉同时把常用的拉氏变换的性质用逆变换形式一一列
前面我们主要讨论了怎样由已知函数是已知象函数F(p)要求它的象原函数氏反变换的简便方法是利用拉氏变换表。
出.
性质12.9(先行性质)
111
L[aF(p)a2F2(p)]a丄[F'p)]a2L[F2(p)]印f^t)&2彳2化)。
1at
L[F(pa)]eLL1[eapF(p)]f(t2p3
P22p5
性质12.10(平移性质)
性质12.11(滞后性质)
例12.14求F(p)
的逆变换。
解:
12p3
f(t)L[飞]
P2p5
2L1[嘤](P1)24
1at
[F(P)]ef(t)。
a)u(ta)。
.1[2(p1)
L[(P1)2
5L1[2(P1)
5
V
2
2
4]
小—1「P■,5t.1「2、
2eL[r]eL[r]
p42p4
t5tt
2ecos2tesin2te[2cos2t
2
在运用拉氏变换解决工程技术中的应有问题时,
于有理分式一般可采用部分分式方法将它分解为较为简单的分式之和,表求出象原函数。
5sin2t]
2
通常遇到的象函数常常是有理分式,对
然后再利用拉氏变换
例12.15求F(p)3P23的逆变换。
p34p24p
解:
先将F[p]分解为几个简单分式之和:
p3p3
~32
P4p
4PP(p
2)2
C
(P2)2
3
用待定系数法求得A-
4
1
,所以
2
3
F(P)
P3
p34p24P
2
(P2)2
f(t)
L1[F(P)]熄
討丄]d1宀
4p4p2
332t12t
ete
442
1l
2
求下列题中函数的拉氏逆变换
1.F(p)
3.F(p)
5.F(p)
2
2p8p236
2
P
p36p29p
习题13.2
2.F(p)
4.F(p)
6.F(p)
4p
p216
1
P(P1)(P2)
P21
p(p1)2
第三节拉氏变换在电学中的应用
、求解常微分方程
例12.16求微分方程x'(t)
解:
第一步对方程两边取拉氏变换,并设
x(0)3的解。
X(p):
2x(t)0满足初值条件
L[x(t)]
L[x'(t)2x(t)]L[0]
L[x(t)]2L[x(t)]0
pX(p)x(0)2X(p)
将初始条件x(0)3代入上式,得
(P2)X(p)3
这样,原来的微分方程经过拉氏变换后,就得到了一个象函数的代数方程。
3
P2
第二步解出X(p):
X(P)
第三步求象函数的拉氏逆变换:
113
x(t)L[X(P)]L「]
3e2t
这样就得到了微分方程的解x(t)
例12.17有一个二阶动态电路满足微分方程
y(0)2,y'(0)1,求其解。
解:
对所给微分方程的两边分别作拉氏变换•设
y''3y'2y2e
t,并且其初值条件
2
[pYpy(0)y(0)]3[pY
L[y(t)]Y(p)
2
P1
y(0)]2y
将初值条件y(0)2,y'(0)1,代入,得到Y的代数方程
22(P3p2)Y—-2p7
P1
Y,则得
(p23p2)Y2p25P5
P1
解出丫,得
丫2p25p5
(P1)(P2)(p1)
将上式分解为部分分式
17
Y343
p1p1p2
再取拉氏逆变换,就得到满足所给初值条件的方程的特解为
1tt72t
y(t)e4ee
33
用拉氏变换还可以解常系数线性微分方程组。
、电学应用举例
例12.18求图示电路的输入运算阻抗乙n(s)
L毗)
(a)
解:
先画出运算电路如图(
1
1ss1
b)所示。
由运算电路得
(b)
s
K1
K2
K3
Is…
c10
6s—
s1s26s
10s1
s3j
s3j
s
其中
s
1
K1Iss1
s12c
s6s
10
s15
K2
Js
K3
0.1
J0.7
2/
81.87
Js3J
0.1
J0.7
1/81.87
2
Ai_
-e七.2e3tcost81.875
Ucs巴Iss
10
s1s6s10
其中
K1心K3
s1s3js3J
K1Ucss1s1
10
K2Ucss3js3j
10
s1s3js3j
1j2.5/116.565
K3Ucss3Js3j5/116.565
则
uctL1Ucs[2et2.5e3tcos(t116.565)]&t(V
习题12.3
求解一输入响应电路的微分方程。
1.
dL5i10e3t,i(0)dt
2.求图(a)所示电路中的回路电流
1.求各函数的拉氏变换
0,0t1
(1)f(t)1,1t2
2,2t
(3)f(t)8sin23t
2.求各象函数的逆变换
(1)F(p)
2
P(P1)
⑶F(p)
5p215p7
3
(p1)(p2)
自测题
(2)f(t)5sin2t3cos2t
(4)f(t)1
(2)F(p)
(4)F(p)
tet
3p9
p22p10
2ep
2p
3•如图所示电路激励为i(t)(t),响应为u1、u2。
求阶跃响应S1(t)>S2(t)
s6s10s1