人教版九年级数学下册知识点总结.docx

上传人:b****3 文档编号:2845169 上传时间:2022-11-15 格式:DOCX 页数:12 大小:60.04KB
下载 相关 举报
人教版九年级数学下册知识点总结.docx_第1页
第1页 / 共12页
人教版九年级数学下册知识点总结.docx_第2页
第2页 / 共12页
人教版九年级数学下册知识点总结.docx_第3页
第3页 / 共12页
人教版九年级数学下册知识点总结.docx_第4页
第4页 / 共12页
人教版九年级数学下册知识点总结.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

人教版九年级数学下册知识点总结.docx

《人教版九年级数学下册知识点总结.docx》由会员分享,可在线阅读,更多相关《人教版九年级数学下册知识点总结.docx(12页珍藏版)》请在冰豆网上搜索。

人教版九年级数学下册知识点总结.docx

人教版九年级数学下册知识点总结

人教版九年级数学下册知识点总结

 

第二十六章 二次函数

26.1二次函数及其图像

二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。

二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。

其图像是一条主轴平行于y轴的抛物线。

一般的,自变量x和因变量y之间存在如下关系:

一般式

  y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a);

顶点式

  y=a(x+m)∧2+k(a≠0,a、m、k为常数)或y=a(x-h)∧2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;

交点式

  y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线];

  重要概念:

a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。

a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。

牛顿插值公式(已知三点求函数解析式)

  y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。

由此可引导出交点式的系数a=y1/(x1*x2)(y1为截距)

  

求根公式

二次函数表达式的右边通常为二次三项式。

求根公式

  x是自变量,y是x的二次函数

  x1,x2=[-b±(√(b^2-4ac))]/2a

  (即一元二次方程求根公式)(如右图) 

  求根的方法还有因式分解法和配方法

在平面直角坐标系中作出二次函数y=2x的平方的图像,

  可以看出,二次函数的图像是一条永无止境的抛物线。

  

不同的二次函数图像

如果所画图形准确无误,那么二次函数将是由一般式平移得到的。

  注意:

草图要有1本身图像,旁边注明函数。

  2画出对称轴,并注明X=什么

  3与X轴交点坐标,与Y轴交点坐标,顶点坐标。

抛物线的性质

轴对称

  1.抛物线是轴对称图形。

对称轴为直线x=-b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

顶点

  2.抛物线有一个顶点P,坐标为P(-b/2a,4ac-b^2;)/4a)

  当-b/2a=0时,P在y轴上;当Δ=b^2;-4ac=0时,P在x轴上。

开口

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

决定对称轴位置的因素

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号

  当a与b异号时(即ab<0),对称轴在y轴右。

因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号

  可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时

  (即ab<0),对称轴在y轴右。

  事实上,b有其自身的几何意义:

抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的

  斜率k的值。

可通过对二次函数求导得到。

决定抛物线与y轴交点的因素

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

抛物线与x轴交点个数

  6.抛物线与x轴交点个数

  Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

  Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

  _______

  Δ=b^2-4ac<0时,抛物线与x轴没有交点。

X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上

  虚数i,整个式子除以2a)

  当a>0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x<-b/2a}上是减函数,在

  {x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变

  当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)

特殊值的形式

  7.特殊值的形式

  ①当x=1时y=a+b+c

  ②当x=-1时y=a-b+c

  ③当x=2时y=4a+2b+c

  ④当x=-2时y=4a-2b+c

二次函数的性质

  8.定义域:

R

  值域:

(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,

  正无穷);②[t,正无穷)

  奇偶性:

当b=0时为偶函数,当b≠0时为非奇非偶函数。

  周期性:

  解析式:

  ①y=ax^2+bx+c[一般式]

  ⑴a≠0

  ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;

  ⑶极值点:

(-b/2a,(4ac-b^2)/4a);

  ⑷Δ=b^2-4ac,

  Δ>0,图象与x轴交于两点:

  ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);

  Δ=0,图象与x轴交于一点:

  (-b/2a,0);

  Δ<0,图象与x轴无交点;

  ②y=a(x-h)^2+k[顶点式]

  此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

  ③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)

  对称轴X=(X1+X2)/2当a>0且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X

  的增大而减小

  此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连

  用)。

交点式是Y=A(X-X1)(X-X2)知道两个x轴交点和另一个点坐标设交点式。

两交点X值就是相应X1X2值。

26.2用函数观点看一元二次方程

1.如果抛物线

与x轴有公共点,公共点的横坐标是

,那么当

时,函数的值是0,因此

就是方程

的一个根。

2.二次函数的图象与x轴的位置关系有三种:

没有公共点,有一个公共点,有两个公共点。

这对应着一元二次方程根的三种情况:

没有实数根,有两个相等的实数根,有两个不等的实数根。

26.3实际问题与二次函数

在日常生活、生产和科研中,求使材料最省、时间最少、效率最高等问题,有些可归结为求二次函数的最大值或最小值。

 

第二十七章 相似

27.1图形的相似

概述

  如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。

(相似的符号:

∽)

判定

  如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。

相似比

  相似多边形的对应边的比叫相似比。

相似比为1时,相似的两个图形全等。

性质

  相似多边形的对应角相等,对应边的比相等。

相似多边形的周长比等于相似比。

相似多边形的面积比等于相似比的平方。

27.2相似三角形

判定

  1.两个三角形的两个角对应相等

  2.两边对应成比例,且夹角相等

  3.三边对应成比例

  4.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

例题

  ∵∠A=∠A';∠B=∠B'

  

  

  ∴△ABC∽△A'B'C'

性质

  1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

  2.相似三角形周长的比等于相似比。

3.相似三角形面积的比等于相似比的平方

27.3位似

如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

性质

  位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比。

位似多边形的对应边平行或共线。

位似可以将一个图形放大或缩小。

位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。

  根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。

  注意

  1、位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;

  2、两个位似图形的位似中心只有一个;

  3、两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;

  4、位似比就是相似比.利用位似图形的定义可判断两个图形是否位似;

5、平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形位似。

第二十八章 锐角三角函数

28.1锐角三角函数

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。

  正弦(sin)等于对边比斜边,

  余弦(cos)等于邻边比斜边

  正切(tan)等于对边比邻边;

  余切(cot)等于邻边比对边

  正割(sec)等于斜边比邻边

  余割(csc)等于斜边比对边

正切与余切互为倒数

互余角的三角函数间的关系。

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα.

同角三角函数间的关系

  平方关系:

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  ·积的关系:

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  ·倒数关系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  直角三角形ABC中,

  角A的正弦值就等于角A的对边比斜边,

  余弦等于角A的邻边比斜边

  正切等于对边比邻边,

余切等于邻边比对边

三角函数值

  

(1)特殊角三角函数值

  

(2)0°~90°的任意角的三角函数值,查三角函数表。

  (3)锐角三角函数值的变化情况

  (i)锐角三角函数值都是正值

  (ii)当角度在0°~90°间变化时,

  正弦值随着角度的增大(或减小)而增大(或减小)

  余弦值随着角度的增大(或减小)而减小(或增大)

  正切值随着角度的增大(或减小)而增大(或减小)

  余切值随着角度的增大(或减小)而减小(或增大)

  (iii)当角度在0°≤α≤90°间变化时,

  0≤sinα≤1,1≥cosα≥0,

  当角度在0°<α<90°间变化时,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 财务管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1