生物化学提要.docx

上传人:b****5 文档编号:28313442 上传时间:2023-07-10 格式:DOCX 页数:22 大小:37.56KB
下载 相关 举报
生物化学提要.docx_第1页
第1页 / 共22页
生物化学提要.docx_第2页
第2页 / 共22页
生物化学提要.docx_第3页
第3页 / 共22页
生物化学提要.docx_第4页
第4页 / 共22页
生物化学提要.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

生物化学提要.docx

《生物化学提要.docx》由会员分享,可在线阅读,更多相关《生物化学提要.docx(22页珍藏版)》请在冰豆网上搜索。

生物化学提要.docx

生物化学提要

生物化学提要

第一章糖类

糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。

糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。

多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。

糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。

同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。

糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。

单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。

因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。

任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。

单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L系糖,大多数天然糖是D系糖FischerE论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。

许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。

这种反应经常发生在C5羟基和C1醛基之间,而形成六元环砒喃糖(如砒喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。

成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。

在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。

单糖可以发生很多化学反应。

醛基或伯醇基或两者氧化成羧酸,羰基还原成醇;一般的羟基参与成脂、成醚、氨基化和脱氧等反应;异头羟基能通过糖苷键与醇和胺连接,形成糖苷化合物。

例如,在寡糖和多糖中单糖与另一单糖通过O-糖苷键相连,在核苷酸和核酸中戊糖经N-糖苷键与心嘧啶或嘌呤碱相连。

生物学上重要的单糖及其衍生物有Glc,Gal,Man,Fru,GlcNAc,GalNAc,L-Fuc,NeuNAc(Sia),GlcUA等它们是寡糖和多糖的组分,许多单糖衍生物参与复合糖聚糖链的组成,此外单糖的磷酸脂,如6-磷酸葡糖,是重要的代谢中间物。

蔗糖、乳糖和麦芽糖是常见的二糖。

蔗糖是由α-Gla和β-Fru在两个异头碳之间通过糖苷键连接而成,它已无潜在的自由醛基,因而失去还原,成脎、变旋等性质,并称它为非还原糖。

乳糖的结构是Galβ(1-4)Glc,麦芽糖是Glcα(1-4)Glc,它们的末端葡萄搪残基仍有潜在的自由醛基,属还原糖。

环糊精由环糊精葡糖基转移酶作用于直链淀粉生成含6,7或8个葡萄糖残基,通过α-1,4糖苷键连接成环,属非还原糖,由于它的特殊结构被用作稳定剂、抗氧化剂和增溶剂等。

淀粉、糖原和纤维素是最常见的多糖,都是葡萄糖的聚合物。

淀粉是植物的贮存养料,属贮能多糖,是人类食物的主要成分之一。

糖原是人和动物体内的贮能多糖。

淀粉可分直链淀粉和支链淀粉。

直链淀粉分子只有α-1,4连键,支链淀粉和糖原除α-1,4连键外尚有α-1,6连键形成分支,糖原的分支程度比支链淀粉高。

纤维素与淀粉、糖原不同,它是由葡萄糖通过β-1.4糖苷键连接而成的,这一结构特点使纤维素具有适于作为结构成分的物理特性,它属于结构多糖。

肽聚糖是细菌细胞壁的成分,也属结构多糖。

它可看成由一种称胞壁肽的基本结构单位重复排列构成。

胞壁肽是一个含四有序侧链的二糖单位,G1cNAcβ(1-4)MurNAc,二糖单位问通过β-1,4连接成多糖,链相邻的多糖链通过转肽作用交联成一个大的囊状分子。

青霉素就是通过抑制转肽干扰新的细胞壁形成而起抑菌作用的。

磷壁酸是革兰氏阳性细菌细胞壁的特有成分;脂多糖是阴性细菌细胞壁的特有成分。

糖蛋白是一类复合糖或一类缀合蛋白质。

许多膜内在蛋白质加分泌蛋白质都是糖蛋白糖蛋白和糖脂中的寡糖链,序列多变,结构信息丰富,甚至超过核酸和蛋白质。

一个寡搪链中单糖种类、连接位置、异头碳构型和糖环类型的可能排列组合数目是一个天文数字。

糖蛋白中寡糖链的还原端残基与多肽链氨基酸残基之间的连接方式有:

N-糖太键,如β-GlcNAc-Asn和O-糖肽链,如α-GalNAc-Thr/Ser,β-Gal-Hyl,β-L-Araf-Hyp,N-连接的寡糖链(N-糖链)都含有一个共同的结构花式称核心五糖或三甘露糖基核心,N-糖链可分为复杂型、高甘露糖型和杂合型三类,它们的区别王要在外周链,O-糖链的结构比N-糖链简单,但连接形式比N-糖链的多。

糖蛋白中的寡糖链在细胞识别包括细胞粘着、淋巴细胞归巢和精卵识别等生物学过程中起重要作用。

在人红细胞表面上存在很多血型抗原决定簇,其中多数是寡糖链。

在ABO血型系统中A,B,O(H)三个抗原决定簇只差一个单糖残基,A型在寡糖基的非还原端有一个GalNAc,B型有一个Gal,O型这两个残基均无。

凝集素是一类非抗体的能与糖类专一结合的蛋白质或糖蛋白,伴刀豆凝集素A(ConA),花生凝集素等属植物凝集素;细菌和病毒也有凝集素,如流感病毒含红细胞凝集素。

作为各类白细胞CAM的选择蛋白家族也属于凝集素。

此家族中已知有L、E、P三种选择蛋白,它们通过细胞粘着产生多种生物学效应,如免疫应答、炎症反应、肿瘤转移等。

糖胺聚糖和蛋白聚糖是动物细胞外基质的重要成分。

糖胺聚糖是由己糖醛酸和己糖胺组成的二糖单位重复构成。

多数糖胺聚糖都不同程度地被硫酸化如4-硫酸软骨素、硫酸角质素等。

糖胺聚搪多以蛋白聚糖形式存在,但透明质酸是例外。

蛋白聚糖是一类特殊的糖蛋白,由一条或多条糖胺聚糖链和一个核心蛋白共价连接而成。

有的蛋白聚糖以聚集体(透明质酸分子为核心)形式存在。

它们是高度亲水的多价阴离子,在维持皮肤、关节、软骨等结缔组织的形态和功能方面起重要作用。

寡糖链结构分析的一般步骤是:

分离提纯待测定的完整糖链,对获得的均一样品用GLC法测定单糖组成,根据高碘酸氧化或甲基化分析确定糖苷键的位置,用专一性糖苷酶确定糖苷键的构型。

糖链序列可采用外切糖苷酶连续断裂或FAB-MS等方法加以测定。

第二章脂质

脂质是细胞的水不溶性成分,能用有机溶剂如乙醚、氯仿等进行提取。

脂质按化学组成可分为单纯脂质、复合脂质和衍生脂质;按生物功能可分为贮存脂质、结构脂质和活性脂质。

天然脂肪酸通常具有偶数碳原子,链长一般为12-22碳。

脂肪酸可分为饱和、单不饱和与多不饱和脂肪酸。

不饱和脂肪酸的双键位置,有一个双键几乎总是处于C9-C10之间(△9)并且一般是顺式的。

脂肪酸的物理性质主要决定于其烃链的长度与不饱和程度。

必需脂肪酸是指对人体的功能不可缺少,但必须由膳食提供的两个多不饱和脂肪酸,亚油酸和α-亚麻酸;前者属ω-6家族,后者ω-3家族。

类二十碳烷主要是由20碳的花生四烯酸衍生而来并因此得名,包括前列腺素、凝血恶烷和白三烯,它们是体内的局部激素。

三酰甘油或甘油三脂(TG)是由脂肪酸与甘油形成的三脂。

三酰甘油可分简单三酰甘油和混合三酰甘油。

天然油脂是简单和混合三酰甘油的混合物。

三酰甘油与碱共热可发生皂化,生成脂肪酸盐(皂)和甘油。

三酰甘油也和游离脂肪酸一样,它的不饱和键能发生氢化、卤化和过氧化作用。

测定天然油脂的皂化值、碘值、酸值和乙酰化值,可确定所给油脂的特性。

三酰甘油主要作为贮存燃料,以油滴形式存在于细胞中。

蜡是指长链脂肪酸和长链一元醇或固醇形成的酯。

天然蜡如蜂蜡是多种蜡酯的混合物。

蜡是海洋浮游生物中代谢燃料的主要贮存形式。

蜡还有其他的生物功能如防水、防侵袭等。

脂质过氧化定义为多不饱和脂肪酸或多不饱和脂质的氧化变质。

它是典型的活性氧参与的自由基链式反应。

活性氧(O-2、·OH、H2O2、ˉO2等)使生物膜发生脂质过氧化,造成膜的损伤、蛋白质和核酸等大分子的异常。

脂质过氧化与多种疾病有关。

体内的抗氧化剂如超氧化物歧化酶(SOD)、维生素E等是与脂质过氧化坑衡的保护系统。

磷脂包括甘油磷脂和鞘磷脂。

甘油磷脂是由sn-甘油-3-磷酸衍生而来,最简单的甘油磷脂是3-sn-磷脂酸,它是其他甘油磷脂的母体。

磷脂酸进一步被一个极性醇(如胆碱、乙醇胺等)酯化,则形成各种甘油磷脂如磷脂酰胆碱和磷脂酰乙醇胺。

鞘磷脂是由鞘氨醇代替甘油磷脂中的甘油形成的磷脂。

鞘氨醇是种长链的氨基醇。

其2-位氨基以酰胺键与脂肪酸连接形成神经酰胺,这是这类磷脂的母体。

神经酰胺的1-位羟基被磷酰胆碱或磷酰乙醇胺脂化则形成鞘磷脂。

磷脂是两亲分子,有一个极性头基和一个非极性尾,在水介质中能形成脂双层;它们主要参与膜的组成。

糖脂主要是鞘糖脂,它也是神经酰胺的衍生物,在神经酰胺的1-位羟基通过糖苷键与糖基连接而成鞘糖脂。

重要的鞘糖脂有脑苷脂和神经节苷脂,后者含有唾液酸。

作为膜脂的鞘糖脂与细胞识别以及组织、器官的特异性有关。

萜类可看成是异戊二烯(CS)的聚合物,有倍半萜、双萜、三萜、四萜等。

萜的结构有线形的,也有环状的。

许多植物精油、光合色素和甾类的前体鲨烯都是萜。

类固醇或称甾类,是环戊烷多氢菲的衍生物。

固醇或甾醇是类固醇中的一大类,其结构特点是在甾核的C3上有一个β羟基,C17上有一个含8~10个碳的烃链。

固醇存在于大多数真核细胞的膜中但细菌不含固醇。

胆固醇是最常见的一种动物固醇,参与动物细胞膜的组成。

胆固醇也是体内类固醇激素和胆汁酸(胆酸、鹅胆酸和脱氧胆酸)的前体。

胆固醇与动脉粥样硬化有关。

植物固醇如谷固醇、豆固醇,它们自身不易被肠粘膜吸收并能抑制胆固醇吸收。

脂蛋白是由脂质和蛋白质以非共价键结合而成的复合体。

脂蛋白中的蛋白质部分称载脂蛋白。

血浆脂蛋白是血浆中转运脂质的脂蛋白颗粒。

由于各种血浆脂蛋白的密度不同可用超离心法把它们分成5个组分(按密度增加为序):

乳糜微粒,极低密度脂蛋白(VLDL),中间密度脂蛋白(IDL),低密度脂蛋白(LDL)和高密度脂蛋白(HDL)。

血浆脂蛋白都是球形颗粒,有一个由三酰甘油和胆固醇脂组成的疏水核

心和一个由磷脂、胆固醇和载脂蛋白参与的极性外壳。

载脂蛋白的主要作用是增溶疏水脂质和作为脂蛋白受体的识别部位。

测定脂质组成时,脂质可用有机溶剂从组织中提取,用薄层层析或气液色谱进行分离。

单个的脂质可根据其层析行为,对专一性酶水解的敏感性或质谱分析加以鉴定。

第三章氨基酸

α-氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们。

蛋白质中的氨基酸都是L型的。

但碱水解得到的氨基酸是D型和L型的消旋混合物。

参与蛋白质组成的基本氨基酸只有20种。

此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质生物合成后由相应是基本氨基酸(残基)经化学修饰而成。

除参与蛋白质组成的氨基酸外,还有很多种其他氨基酸存在与各种组织和细胞中,有的是β-、γ-或δ-氨基酸,有些是D型氨基酸。

氨基酸是两性电解质。

当pH接近1时,氨基酸的可解离基团全部质子化,当pH在13左右时,则全部去质子化。

在这中间的某一pH(因不同氨基酸而异),氨基酸以等电的兼性离子(H3N+CHRCOO-)状态存在。

某一氨基酸处于净电荷为零的兼性离子状态时的介质pH称为该氨基酸的等电点,用pI表示。

所有的α-氨基酸都能与茚三酮发生颜色反应。

α-NH2与2,4-二硝基氟苯(DNFB)作用产生相应的DNP-氨基酸(Sanger反应);α-NH2与苯乙硫氰酸酯(PITC)作用形成相应氨基酸的苯胺基硫甲酰衍生物(Edman反应)。

胱氨酸中的二硫键可用氧化剂(如过甲酸)或还原剂(如巯基乙醇)断裂。

半胱氨酸的SH基在空气中氧化则成二硫键。

这几个反应在氨基酸荷蛋白质化学中占有重要地位。

除甘氨酸外α-氨基酸的α-碳是一个手性碳原子,因此α-氨基酸具有光学活性。

比旋是α-氨基酸的物理常数之一,它是鉴别各种氨基酸的一种根据。

参与蛋白质组成的氨基酸中色氨酸、酪氨酸和苯丙氨酸在紫外区有光吸收,这是紫外吸收法定量蛋白质的依据。

核磁共振(NMR)波谱技术在氨基酸和蛋白质的化学表征方面起重要作用。

氨基酸分析分离方法主要是基于氨基酸的酸碱性质和极性大小。

常用方法有离子交换柱层析、高效液相层析(HPLC)等。

第四章蛋白质的共价结构

蛋白质分子是由一条或多条肽链构成的生物大分子。

多肽链是由氨基酸通过肽键共价连接而成的,各种多肽链都有自己特定的氨基酸序列。

蛋白质的相对分子质量介于6000到1000000或更高。

蛋白质分为两大类:

单纯蛋白质和缀合蛋白质。

根据分子形状可分为纤维状蛋白质、球状蛋白质和膜蛋白质。

此外还可按蛋白质的生物学功能分类。

为了表示蛋白质结构的不同组织层次,经常使用一级结构、二级结构、三级结构和四级结构这样一些专门术语。

一级结构就是共价主链的氨基酸序列,有时也称化学结构。

二、三和四级结构又称空间结构(即三维结构)或高级结构。

蛋白质的生物功能决定于它的高级结构,高级结构是由一级结构即氨基酸序列决定的,二氨基酸序列是由遗传物质DNA的核苷酸序列规定的。

肽键(CO—NH)是连接多肽链主链中氨基酸残缺的共价键,二硫键是使多肽链之间交联或使多肽链成环的共价键。

多肽链或蛋白质当发生部分水解时,可形成长短不一的肽段。

除部分水解可以产生小肽之外,生物界还存在许多游离的小肽,如谷胱甘肽等。

小肽晶体的熔点都很高,这说明短肽的晶体是离子晶格、在水溶液中也是以偶极离子存在的。

测定蛋白质一级结构的策略是:

(1)测定蛋白质分子中多肽链数目;

(2)拆分蛋白质分子的多肽链;(3)断开多肽链内的二硫桥;(4)分析每一多肽链的氨基酸组成;(5)鉴定多肽链的N-末端和C-末端残基;(6)断裂多肽链成较小的肽段,并将它们分离开来;(7)测定各肽段的氨基酸序列;(8)利用重叠肽重建完整多肽链的一级结构;(9)确定半胱氨酸残基形成的S-S交联桥的位置。

序列分析中的重要方法和技术有:

测定N-末端基的苯异硫氰酸酯(PITC)法,分析C-末端基的羧肽酶法,用于多肽链局部断裂的酶裂解和CNBr化学裂解,断裂二硫桥的巯基乙醇处理,测定肽段氨基酸序列的Edman化学降解和电喷射串联质谱技术,重建多肽链一级序列的重叠肽拼凑法以及用于二硫桥定位的对角线电泳等。

在不同生物体中行使相同或相似功能的蛋白质称同源蛋白质。

同源蛋白质具有明显的序列相似性(称序列同源),两个物种的同源蛋白质,其序列间的氨基酸差异数目与这些物种间的系统发生差异是成比例的。

并根据同源蛋白质的氨基酸序列资料建立起进化树。

同源蛋白质具有共同的进化起源。

在生物体内有些蛋白质常以前体形试合成,只有按一定方式裂解除去部分肽链之后才出现生物活性,这一现象称蛋白质的激活。

血液凝固是涉及氨基酸序列断裂的一系列酶原被激活的结果,酶促激活的级联放大,使血凝块迅速形成成为可能。

凝血酶原和血清蛋白原是两个最重要的血凝因子。

血纤蛋白蛋白原在凝血酶的作用下转变为血清蛋白凝块(血块的主要成分)。

我国在20世纪60年代首次在世界上人工合成了蛋白质——结晶牛胰岛素。

近二、三十年发展起来的固相肽合成是控制合成技术上的一个巨大进步,它对分子生物学和基因工程也就具有重要影响和意义。

至今利用Merrifield固相肽合成仪已成功地合成了许多肽和蛋白质。

第五章蛋白质的三维结构

每一种蛋白质至少都有一种构像在生理条件下是稳定的,并具有生物活性,这种构像称为蛋白质的天然构像。

研究蛋白质构像的主要方法是X射线晶体结构分析。

此外紫外差光谱、荧光和荧光偏振、圆二色性、核磁共振和重氢交换等被用于研究溶液中的蛋白质构像。

稳定蛋白质构像的作用有氢键、范德华力、疏水相互作用和离子键。

此外二硫键在稳定某些蛋白质的构像种也起重要作用。

多肽链折叠成特定的构像受到空间上的许多限制。

就其主链而言,由于肽链是由多个相邻的肽平面构成的,主链上只有α-碳的二平面角Φ和Ψ能自由旋转,但也受到很大限制。

某些Φ和Ψ值是立体化学所允许的,其他值则不被允许。

并因此提出了拉氏构像,它表明蛋白质主链构象在图上所占的位置是很有限的(7.7%-20.3%)。

蛋白质主链的折叠形成由氢键维系的重复性结构称为二级结构。

最常见的二级结构元件有α螺旋、β转角等。

α螺旋是蛋白质中最典型、含量最丰富的二级结构。

α螺旋结构中每个肽平面上的羰氧和酰氨氢都参与氢键的形成,因此这种构象是相当稳定的。

氢键大体上与螺旋轴平行,每圈螺旋占3.6个氨基酸残基,每个残基绕轴旋转100°,螺距为0.54nm。

α-角蛋白是毛、发、甲、蹄中的纤维状蛋白质,它几乎完全由α螺旋构成的多肽链构成。

β折叠片中肽链主链处于较伸展的曲折(锯齿)形式,肽链之间或一条肽链的肽段之间借助氢键彼此连接成片状结构,故称为β折叠片,每条肽链或肽段称为β折叠股或β股。

肽链的走向可以有平行和反平行两种形式。

平行折叠片构象的伸展程度略小于反平行折叠片,它们的重复周期分别为0.65nm和0.70nm。

大多数β折叠股和β折叠片都有右手扭曲的倾向,以缓解侧链之间的空间应力(stericstrain)。

蚕丝心蛋白几乎完全由扭曲的反平行β折叠片构成。

胶原蛋白是动物结缔组织中最丰富的结构蛋白,有若干原胶原分子组成。

原胶原是一种右手超螺旋结构,称三股螺旋。

弹性蛋白是结缔组织中另一主要的结构蛋白质。

蛋白质按其外形和溶解度可分为纤维状蛋白质、球状蛋白质和膜蛋白。

α-角蛋白、丝心蛋白(β-角蛋白)、胶原蛋白和弹性蛋白是不溶性纤维状蛋白质;肌球蛋白和原肌球蛋白是可溶性纤维状蛋白质,是肌纤维中最丰富的蛋白质。

球状蛋白质是一类可溶性的功能蛋白,如酶、抗体、转运蛋白、蛋白质激素等,膜蛋白是一类与膜结构和功能紧密相关的蛋白质,它们又可分为膜内在蛋白质、脂锚定蛋白质以及膜周边蛋白质。

蛋白质结构一般被分为4个组织层次(折叠层次),一级、二级、三级和四级结构。

细分时可在二、三级和四级结构。

细分时可在二、三级之间增加超二级结构和结构域两个层次。

超二级结构是指在一级序列上相邻的二级结构在三维折叠中彼此靠近并相互作用形成的组合体。

超二级结构有3种基本形式:

αα(螺旋束)、βαβ(如Rossman折叠)、ββ(β曲折和希腊钥匙拓扑结构)。

结构域是在二级结构和超二级结构的基础上形成并相对独立的三级结构局部折叠区。

结构域常常也就是功能域。

结构域的基本类型有:

全平行α螺旋结构域、平行或混合型β折叠片结构域、反平行β折叠片结构域和富含金属或二硫键结构域等4类。

球状蛋白质可根据它们的结构分为全α-结构蛋白质、α、β-结构蛋白质、全β-结构蛋白质和富含金属或二硫键蛋白质等。

球状蛋白质有些是单亚基的,称单体蛋白质,有些是多亚基的,称寡聚或多聚蛋白质。

亚基一般是一条多肽链。

亚基(包括单体蛋白质)的总三维结构称三级结构。

球状蛋白质种类很多,结构也很复杂,各有自己独特的三维结构。

但球状蛋白质分子仍有某些共同的结构特征:

①一种分子可含多种二级结构元件,②具有明显的折叠层次,③紧密折叠成球状或椭球状结构,④疏水测链埋藏在分子内部,亲水基团暴露在分子表面,⑤分子表面往往有一个空穴(活性部位)。

蛋白质受到某些物理或化学因素作用时,引起生物活性丢失,溶解度降低以及其他的物理化学常数的改变,这种现象称为蛋白质变性。

变性实质是非共价键破裂,天然构象解体,但共价键未遭破裂。

有些变性是可逆的。

蛋白质变性和复性实验表明,一级结构规定它的三维结构。

蛋白质的生物学功能是蛋白质天然构象所具有的性质。

天然构象是在生理条件下热力学上最稳定的即自由能最低的三维结构。

蛋白质折叠不是通过随机搜索找到自由能最低构象的。

折叠动力学研究表明,多肽链折叠过程中存在熔球态的中间体,并有异构酶和伴侣蛋白质等参加。

寡聚蛋白是由两个或多个亚基通过非共价相互作用缔合而成的聚集体。

缔合形成聚集体的方式构成蛋白质的四级结构,它涉及亚级在聚集体中的空间排列(对称性)以及亚基之间的接触位点(结构互补)和作用力(非共价相互作用的类型)。

第六章蛋白质结构与功能的关系

肌红蛋白(Mb)和血红蛋白(Hb)是脊椎动物中的载氧蛋白质。

肌红蛋白便于氧在肌肉中转运,并作为氧的可逆性贮库。

而血红蛋白是血液中的氧载体。

这些蛋白质含有一个结合得很紧的血红素辅基。

它是一个取代的卟啉,在其中央有一个铁原子。

亚铁(Fe2+)态的血红素能结合氧,但高铁(+3)态的不能结合氧。

红血素中的铁原子还能结合其他小分子如CO、NO等。

肌红蛋白是一个单一的多肽链,含153个残基,外形紧凑。

Mb内部几乎都是非极性残基。

多肽链中约75%是α螺旋,共分八个螺旋段。

一个亚铁血红素即位于疏水的空穴内,它可以保护铁不被氧化成高铁。

血红素铁离子直接与一个His侧链的氮原子结合。

此近侧His(H8)占据5个配位位置。

第6个配位位置是O2的结合部位。

在此附近的远侧His(E7)降低在氧结合部位上CO的结合,并抑制血红素氧化或高铁态。

氧与Mb结合是可逆的。

对单体蛋白质如Mb来说,被配体(如)O2占据的结合部位的分数是配体浓度的双曲线函数,如Mb的氧集合曲线。

血红蛋白由4个亚基(多肽链)组成,每个亚基都有一个血红素基。

HbA是成人中主要的血红蛋白,具有α2β2的亚基结构。

四聚体血红蛋白中出现了单体血红蛋白所不具有的新性质,Hb除运载氧外还能转运H+和CO2。

血红蛋白以两种可以相互转化的构象态存在,称T(紧张)和R(松弛)态。

T态是通过几个盐桥稳定的。

无氧结合时达到最稳定。

氧的结合促进T态转变为R态。

氧与血红蛋白的结合是别构结合行为的一个典型例证。

T态和R态之间的构象变化是由亚基-亚基相互作用所介导的,它导致血红蛋白出现别构现象。

Hb呈现3种别构效应。

第一,血红蛋白的氧结合曲线是S形的,这以为着氧的结合是协同性的。

氧与一个血红素结合有助于氧与同一分子中的其他血红素结合。

第二,H+和CO2促进O2从血红蛋白中释放,这是生理上的一个重要效应,它提高O2在代谢活跃的组织如肌肉的释放。

相反的,O2促进H+和CO2在肺泡毛细血管中的释放。

H+、CO2和O2的结合之间的别构联系称为Bohr效应。

第三,血红蛋白对O2的亲和力还受2、3-二磷酸甘油酸(BPG)调节,BPG是一个负电荷密度很高的小分子。

BPG能与去氧血红蛋白结合,但不能与氧合血红蛋白结合。

因此,BPG是降低血红蛋白对氧的亲和力的。

胎儿血红蛋白(α2β2)比成年人的血红蛋白(α2β2)有较高的氧亲和力,就是因为它结合BPG较少。

导致一个蛋白质中氨基酸改变的基因突变能产生所谓分子病,这是一种遗传病。

了解最清楚的分子病是镰刀状细胞贫血病。

这种病人的步正常血红蛋白称为HbS,它只是在两条β链第六位置上的Glu倍置换乘Val。

这一改变在血红蛋白表面上产生一个疏水小区,因而导致血红蛋白聚集成不溶性的纤维束,并引起红细胞镰刀状化和输氧能力降低。

纯合子的病人出现慢性贫血而死亡。

地中海贫血是由于缺失一个或多个编码血红蛋白链的基因造成的。

棉衣反映是由特化的白细胞——淋巴细胞和巨噬细胞及其相关的蛋白质之间的相互作用介导的。

T淋巴细胞产生T细胞受体,B淋巴细胞产生免疫球蛋白,即抗体。

所有的细胞都能产生MHC蛋白,它们在细胞表面展示宿主(自我)肽或抗原(非自我)肽。

助T细胞诱导那些产生免疫球蛋白的B细胞和产生T细胞受体的胞毒T细胞增殖。

免疫球蛋白或T细胞受体能与特异的抗原结合。

一个特定的祖先细胞通过刺激繁殖,产生一个具有同样免疫能力的细胞群的过程称为克隆选择。

人类具有5个类别的免疫球蛋白,每一类别的生物学功能都是不同的。

最丰富的是IgG类,它由4条多肽链组成,两条重链,两条轻链,通过二硫键连接成Y形结构的分子。

靠近Y的两“臂”顶端的结构域是多变区,形成来年各个抗原结合部位。

一个给顶的免疫球蛋白一般只结合一个大抗原

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 职业教育 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1