金属学与热处理526105230全解.docx

上传人:b****5 文档编号:28249282 上传时间:2023-07-09 格式:DOCX 页数:19 大小:75.56KB
下载 相关 举报
金属学与热处理526105230全解.docx_第1页
第1页 / 共19页
金属学与热处理526105230全解.docx_第2页
第2页 / 共19页
金属学与热处理526105230全解.docx_第3页
第3页 / 共19页
金属学与热处理526105230全解.docx_第4页
第4页 / 共19页
金属学与热处理526105230全解.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

金属学与热处理526105230全解.docx

《金属学与热处理526105230全解.docx》由会员分享,可在线阅读,更多相关《金属学与热处理526105230全解.docx(19页珍藏版)》请在冰豆网上搜索。

金属学与热处理526105230全解.docx

金属学与热处理526105230全解

晶胞:

在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。

金属键:

失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。

位错:

晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。

位错的柏氏矢量具有的一些特性:

①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。

刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。

晶界具有的一些特性:

①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。

相起伏:

液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。

过冷度:

理论结晶温度与实际结晶温度的差称为过冷度。

变质处理:

在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。

细化晶粒的方法:

增加过冷度、变质处理、振动与搅拌。

相律:

f=c–p+1其中,f为自由度数,c为组元数,p为相数。

伪共晶:

在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全部共晶组织,这种共晶组织称为伪共晶。

合金:

两种或两种以上的金属,或金属与非金属,经熔炼或烧结、或用其它方法组合而成的具有金属特性的物质。

合金相:

在合金中,通过组成元素(组元)原子间的相互作用,形成具有相同晶体结构与性质,并以明确界面分开的成分均一组成部分称为合金相。

奥氏体与铁素体的异同点:

相同点:

都是铁与碳形成的间隙固溶体;强度硬度低,塑性韧性高。

不同点:

铁素体为体心结构,奥氏体面心结构;铁素体最高含碳量为0.0218%,奥氏体

二次渗碳体与共析渗碳体的异同点。

相同点:

都是渗碳体,成份、结构、性能都相同。

不同点:

来源不同,二次渗碳体由奥氏体中析出,共析渗碳体是共析转变得到的;形态不同二次渗碳体成网状,共析渗碳体成片状;对性能的影响不同,片状的强化基体,提高强度,网状降低强度。

塑性变形的方式:

以滑移和孪晶为主。

滑移:

晶体的一部分沿着一定的晶面和晶向相对另一部分作相对的滑动。

滑移的本质是位错的移动。

体心结构的滑移系个数为12,滑移面:

{110},方向<111>。

面心结构的滑移系个数为12,滑移面:

{111},方向<110>。

金属塑性变形后的组织与性能:

显微组织出现纤维组织,杂质沿变形方向拉长为细带状或粉碎成链状,光学显微镜分辨不清晶粒和杂质。

亚结构细化,出现形变织构。

性能:

材料的强度、硬度升高,塑性、韧性下降;比电阻增加,导电系数和电阻温度系数下降,抗腐蚀能力降低等。

再结晶:

冷变形后的金属加热到一定温度之后,在原来的变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化,并恢复到完全软化状态,这个过程称之为再结晶。

热加工的主要作用(或目的)是:

①把钢材加工成所需要的各种形状,如棒材、板材、线材等;②能明显的改善铸锭中的组织缺陷,如气泡焊合,缩松压实,使金属材料的致密度增加;③使粗大的柱状晶变细,合金钢中大块状碳化物初晶打碎并使其均匀分布;④减轻或消除成分偏析,均匀化学成分等。

使材料的性能得到明显的改善。

影响再结晶的主要因素:

①再结晶退火温度:

退火温度越高(保温时间一定时),再结晶后的晶粒越粗大;②冷变形量:

一般冷变形量越大,完成再结晶的温度越低,变形量达到一定程度后,完成再结晶的温度趋于恒定;③原始晶粒尺寸:

原始晶粒越细,再结晶晶粒也越细;④微量溶质与杂质原子,一般均起细化晶粒的作用;⑤第二相粒子,粗大的第二相粒子有利于再结晶,弥散分布的细小的第二相粒子不利于再结晶;⑥形变温度,形变温度越高,再结晶温度越高,晶粒粗化;⑦加热速度,加热速度过快或过慢,都可能使再结晶温度升高。

塑性变形后的金属随加热温度的升高会发生的一些变化:

显微组织经过回复、再结晶、晶粒长大三个阶段由破碎的或纤维组织转变成等轴晶粒,亚晶尺寸增大;储存能降低,内应力松弛或被消除;各种结构缺陷减少;强度、硬度降低,塑性、韧度提高;电阻下降,应力腐蚀倾向显著减小。

转变产物(P、B、M)的特征、性能特点:

片状P体,片层间距越小,强度越高,塑性、韧性也越好;粒状P体,Fe3C颗粒越细小,分布越均匀,合金的强度越高。

第二相的数量越多,对塑性的危害越大;片状与粒状相比,片状强度高,塑性、韧性差;上贝氏体为羽毛状,亚结构为位错,韧性差;下贝氏体为黑针状或竹叶状,亚结构为位错,位错密度高于上贝氏体,综合机械性能好;低碳马氏体为板条状,亚结构为位错,具有良好的综合机械性能;高碳马氏体为片状,亚结构为孪晶,强度硬度高,塑性和韧性差。

热应力:

工件在加热(或冷却)时,由于不同部位的温度差异,导致热胀(或冷缩)的不一致所引起的应力称为热应力。

组织应力:

由于工件不同部位组织转变不同时性而引起的内应力。

淬透性:

是表征钢材淬火时获得马氏体的能力的特性。

可硬性:

指淬成马氏体可能得到的硬度。

回火稳定性:

淬火钢对回火时发生软化过程的抵抗能力。

回火脆性:

钢在一定的温度范围内回火时,其冲击韧性显著下降,这种脆化现象叫做钢的回火脆性。

过冷奥氏体:

在临界温度以下处于不稳定状态的奥氏体称为过冷奥氏体。

退火的目的:

均匀钢的化学成分及组织;细化晶粒;调整硬度,改善钢的成形及切削加工性能;消除内应力和加工硬化;为淬火做好组织准备。

正火的目的:

改善钢的切削加工性能;细化晶粒,消除热加工缺陷;消除过共析钢的网状碳化物,便于球化退火;提高普通结构零件的机械性能。

合金钢:

在碳钢的基础上有意地加入一种或几种合金元素,使其使用性能和工艺性能得以提高的以铁为基的合金即为合金钢。

二、1出。

相图中共有几种渗碳体?

说出各自的来源及形态。

相图中共有五种渗碳体:

Fe3CⅠ、Fe3CⅡ、Fe3CⅢ、Fe3C共析、Fe3C共晶;

Fe3CⅠ:

由液相析出,形态连续分布(基体);Fe3CⅡ:

由奥氏体中析出,形态网状分布;Fe3CⅢ:

由铁素体中析出,形态网状、短棒状、粒状分布在铁素体的晶界上;Fe3C共析:

奥氏体共析转变得到,片状;Fe3C共晶:

液相共晶转变得到,粗大的条状。

计算室温下含碳量为

合金相组成物的相对量。

相组成物为α、Fe3C,相对量为:

1.Fe3CІ的相对量:

当x=6.69时Fe3CІ含量最高,最高百分量为:

2.过共析钢中Fe3CⅡ的相对量:

当x=2.11时Fe3CⅡ含量最高,最高百分量为:

3.Fe3CⅢ的相对量计算:

当x=0.0218时Fe3CⅢ含量最高,最高百分量为:

4.共析渗碳体的相对百分量为:

5.共晶渗碳体的相对百分量为:

6.说出奥氏体与铁素体的异同点。

相同点:

都是铁与碳形成的间隙固溶体;强度硬度低,塑性韧性高。

不同点:

铁素体为体心结构,奥氏体面心结构;铁素体最高含碳量为0.0218%,奥氏体最高含碳量为2.11%,铁素体是由奥氏体直接转变或由奥氏体发生共析转变得到,奥氏体是由包晶或由液相直接析出的;存在的温度区间不同。

7.说出二次渗碳体与共析渗碳体的异同点。

相同点:

都是渗碳体,成份、结构、性能都相同。

不同点:

来源不同,二次渗碳体由奥氏体中析出,共析渗碳体是共析转变得到的;形态不同二次渗碳体成网状,共析渗碳体成片状;对性能的影响不同,片状的强化基体,提高强度,网状降低强度。

8.举例说明成分、组织与机械性能之间的关系

如亚共析钢。

亚共析钢室温下的平衡组织为F+P,F的强度低,塑性、韧性好,与F相比P强度硬度高,而塑性、韧性差。

随含碳量的增加,F量减少,P量增加(组织组成物的相对量可用杠杆定律计算)。

所以对于亚共析钢,随含碳量的增加,强度硬度升高,而塑性、韧性下降。

9.说明三个恒温转变,画出转变特征图

包晶转变(LB+δH

γJ)含碳量0.09%~0.53%范围的铁碳合金,于HJB水平线(1495℃)均将通过包晶转变,形成单相奥氏体。

共晶转变(LC

γE+Fe3C)含碳放2.11%一6.69%范围的铁碳合金,于ECF平线上(1148℃)均将通过共晶转变,形成奥氏体和渗碳体两相混合的共晶体,称为菜氏体(Ld)。

共析转变(γS

αP+Fe3C);含碳虽超过0.02%的铁碳合金,于PSK水平线上(727℃)均将通过共析转变,形成铁素体和渗碳体两相混合的共析体,称为珠光体(P)。

各点成分为(C%):

B:

0.53;H:

0.09;J:

0.17;C:

4.3;E:

2.11S:

0.77;P:

0.0218。

10.说出Fe-Fe3C相图中室温下的显微组织

工业纯铁(<0.0218%C)室温组织:

α

亚共析钢(0.0218%~0.77%C)室温组织:

P+α;

共析钢:

0.77%C;室温组织:

P

过共析钢:

0.77%~2.11%C室温组织:

P+Fe3CⅡ

亚共晶白口铁:

2.11%~4.30%C;室温组织:

共晶白口铁:

4.30%C;室温组织:

过共晶白口铁:

4.30%~6.69%C。

室温组织:

七、锻造或轧制的作用是什么?

为什么锻造或轧制的温度选择在高温的奥氏体区?

锻造或轧制的作用是:

把材料加工成形,通过锻造或轧制使铸锭中的组织缺陷得到明显的改善,如气泡焊合,缩松压实,使金属材料的致密度增加;粗大的柱状晶变细;合金钢中大块状碳化物初晶打碎并较均匀分布;使成分均匀,使材料的性能得到明显的改善。

奥氏体稳定存在是在高温区,温度升高材料的强度、硬度下降,塑性韧性升高,有利于变形;奥氏体为面心结构,塑性比其它结构好,塑性好,有利于变形;奥氏体为单相组织,单相组织的强度低,塑性韧性好,有利于变形;变形为材料的硬化过程,变形金属高温下发生回复与再结晶,消除加工硬化,即为动态回复再结晶,适合大变形量的变形。

十三、为什么晶体的滑移通常在密排晶面并沿密排晶向进行?

晶体滑移的实质是位错在滑移面上运动的结果,位错运动的点阵阻力为:

,位错运动的点阵阻力越小,位错运动越容易,从公式中可以看出,d值越大、b值越小,位错运动的点阵阻力越小。

d为晶面间距,密排面的晶面间距最大;b为柏氏矢量,密排方向的柏氏矢量最小。

所以,晶体的滑移通常在密排晶面并沿密排晶向进行。

十四、晶界具有哪些特性?

①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。

十五、简述位错与塑性、强度之间的关系。

位错:

晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。

晶体塑性变形的方式有滑移和孪晶,多数都以滑移方式进行。

滑移的本质就是位错在滑移面上的运动,大量位错滑移的结果造成了晶体的宏观塑性变形。

位错滑移的结果造成了晶体的宏观塑性变形,使材料发生屈服,位错越容易滑移,强度越低,因此增加位错移动的阻力,可以提高材料的强度。

溶质原子造成晶格畸变还可以与位错相互作用形成柯氏气团,都增加位错移动的摩擦阻力,使强度提高。

晶界、相界可以阻止位错的滑移,提高材料的强度。

所以细化晶粒、第二相弥散分布可以提高强度。

十六、论述钢的渗碳通常在奥氏体区(930~950℃)进行,而且时间较长的原因。

虽然碳原子在α-Fe比γ-Fe中扩散系数大(1分),但钢的渗碳通常在奥氏体区进行,因为可以获得较大的渗层深度。

因为:

①根据,

,温度(T)越高,扩散系数(D)越大,扩散速度越快,温度越高原子热振动越激烈,原子被激活而进行迁移的几率越大,扩散速度越快;②温度高,奥氏体的溶碳能力大,1148℃时最大值可达2.11%,远比铁素体(727℃,0.0218%)大,③钢表面碳浓度高,浓度梯度大,扩散速度越快;④时间要足够长,只有经过相当长的时间才能造成碳原子的宏观迁移;

十七、与滑移相比孪晶有什么特点?

①孪晶是一部分晶体沿孪晶面对另一部分晶体做切变,切变时原子移动的距离不是孪晶方向原子间距的整数倍;②孪晶面两边晶体的位相不同,成镜面对称;③由于孪晶改变了晶体的取向,因此孪经晶抛光后仍能重现;④孪晶是一种均匀的切变。

十八、影响再结晶的主要因素有哪些?

①再结晶退火温度:

退火温度越高(保温时间一定时),再结晶后的晶粒越粗大;②冷变形量:

一般冷变形量越大,完成再结晶的温度越低,变形量达到一定程度后,完成再结晶的温度趋于恒定;③原始晶粒尺寸:

原始晶粒越细,再结晶晶粒也越细;④微量溶质与杂质原子,一般均起细化晶粒的作用;⑤第二相粒子,粗大的第二相粒子有利于再结晶,弥散分布的细小的第二相粒子不利于再结晶;⑥形变温度,形变温度越高,再结晶温度越高,晶粒粗化;⑦加热速度,加热速度过快或过慢,都可能使再结晶温度升高。

十九、论述间隙原子、置换原子、位错、晶界对材料力学性能的影响。

间隙原子、置换原子与位错相互作用形成柯氏气团,柯氏气团增加位错移动的阻力;溶质原子造成晶格畸变,增加位错移动的摩擦阻力,使强度提高,这就是固溶强化的机理。

晶界越多,晶粒越细,根据霍尔—配奇关系式σs=σ0+Kd-1/2晶粒的平均直径d越小,材料的屈服强度σs越高。

晶粒越细小,晶粒内部和晶界附近的应变度差越小变形越均匀,因应力集中引起的开裂的机会也越小,塑性越好。

晶粒越细小,应力集中越小,不易产生裂纹,晶界越多,易使裂纹扩展方向发生变化,裂纹不易传播,所以韧性就好。

位错密度越高,则位错运动时越易发生相互交割,形成割阶,造成位错缠结等位错运动的障碍,给继续塑性变形造成困难,从而提高金属的强度。

根据公式∆σ=abGρ1/2,位错密度(ρ)越大,强化效果越显著。

二十、什么是再结晶温度?

影响再结晶温度的因素有哪些?

再结晶温度:

经过严重冷变形(变形度在70%以上)的金属,在约1小时的保温时间内能够完成再结晶(>95%转变量)的温度。

再结晶温度并不是一个物理常数,这是因为再结晶前后的晶格类型不变,化学成分不变,所以再结晶不是相变。

影响再结晶温度的因素:

纯度越高T再越低;变形度越大T再越低;加热速度越小T再越高。

二十一、塑性变形后的金属随加热温度的升高会发生的一些变化:

显微组织经过回复、再结晶、晶粒长大三个阶段由破碎的或纤维组织转变成等轴晶粒,亚晶尺寸增大;储存能降低,内应力松弛或被消除;各种结构缺陷减少;强度、硬度降低,塑性、韧度提高;电阻下降,应力腐蚀倾向显著减小。

二十二、什么是晶面间距?

计算低指数晶面的晶面间距。

晶面间距(d):

两个平行晶面之间的垂直距离。

通常,低指数的晶面间距较大,而高指数晶面间距较小。

晶面间距越大,则该晶面上原子排列越密集。

对于简单立方点阵dhkl=a·(h2+k2+l2)-1/2

fcc:

bcc:

二十三、什么是过冷度?

为什么金属结晶一定要有过冷度?

过冷度:

理论结晶温度与实际结晶温度的差称为过冷度。

液态金属结晶的过程是形核与晶核的长大过程。

从热力学的角度上看,没有过冷度结晶就没有趋动力。

根据

可知当过冷度

为零时临界晶核半径Rk为无穷大,临界形核功(

)也为无穷大。

临界晶核半径Rk与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。

晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。

二十四、简述铸锭三个晶区的形成机理。

表面细晶区:

当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区。

柱状晶区:

在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核。

垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶。

中心等轴晶区:

随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶。

由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶。

二十五、影响置换固溶体溶解度的因素有哪些?

1、原子尺寸因素:

尺寸差越小溶解度越大。

2、负电性因素:

在形成固溶体的情况下,溶解度随负电性差的减小而增大。

3、电子浓度因素:

电子浓度越小,越易形成无限固溶体。

4、晶体结构因素:

晶格类型相同溶解度较大。

二十六、退火与正火的目的是什么?

退火的目的:

均匀钢的化学成分及组织;细化晶粒;调整硬度,改善钢的成形及切削加工性能;消除内应力和加工硬化;为淬火做好组织准备。

正火的目的:

改善钢的切削加工性能;细化晶粒,消除热加工缺陷;消除过共析钢的网状碳化物,便于球化退火;提高普通结构零件的机械性能。

二十七、固溶体与金属化合物有何异同点?

相同点:

都具有金属的特性;

不同点:

结构不同,固溶体的结构与溶剂的相同,金属化合物的结构不同于任一组元;键合方式不同,固溶体为金属键,金属化合物为金属键、共价键、离子键混合键;性能不同,固溶体的塑性好、强度、硬度低,金属化合物,硬度高、熔点高、脆性大;在材料中的作用不同固溶体多为材料的基体,金属化合物为强化相。

二十八、合金元素Cr、Mn、Ni、强碳化物形成元素在钢中的主要作用是什么?

Cr在钢中的主要作用有:

溶入基体,提高淬透性,固溶强化;形成第二相提高强度、硬度;含量超过13%时提高耐腐蚀性;在表面形成致密的氧化膜,提高抗氧化能力。

Cr促进第二类回火脆性的发生。

Mn在钢中的主要作用有:

溶入基体,提高淬透性,固溶强化;形成第二相提高强度、硬度;含量超过13%时形成奥氏体钢,提高耐磨性;消除硫的有害作用。

Mn促进第二类回火脆性的发生,促进奥氏体晶粒的长大。

Ni在钢中的主要作用有:

溶入基体,提高淬透性,固溶强化;扩大奥氏体区,提高钢的韧性,降低冷脆转变温度。

强碳化物形成元素(Ti、Nb、Zr,V)的主要作用有:

形成碳化物提高硬度、强度、耐磨性,提高回火稳定性,细化晶粒,防止晶间腐蚀。

二十九、论述钢材在热处理过程中出现脆化现象的主要原因及解决方法。

答:

①过共析钢奥氏体化后冷却速度较慢出现网状二次渗碳体时,使钢的脆性增加,脆性的网状二次渗碳体在空间上把塑性相分割开,使其变形能力无从发挥。

解决方法,重新加热正火,增加冷却速度,抑制脆性相的析出。

②淬火马氏体在低温回火时会出现第一类回火脆性,高温回火时有第二类回火脆性,第一类回火脆性不可避免,第二类回火脆性,可重新加热到原来的回火温度,然后快冷恢复韧性。

③工件等温淬火时出现上贝氏体时韧性降低,重新奥氏体化后降低等温温度得到下贝氏体可以解解。

④奥氏体化温度过高,晶粒粗大韧性降低。

如:

过共析钢淬火温度偏高,晶粒粗大,获得粗大的片状马氏体时,韧性降低;奥氏体晶粒粗大,出现魏氏组织时脆性增加。

通过细化晶粒可以解决。

三十二、比较下贝氏体与高碳马氏体的主要不同点

①显微组织特征不同,下贝氏体为黑针状或竹叶状,高碳马氏体为片状;②亚结构不同,下贝氏体亚结构为位错,高碳马氏体的亚结构为孪晶;③性能特点不同,下贝氏体具有良好的综合机械性能,高碳马氏体强度硬度高,塑性和韧性差;④相变特点不同,下贝氏体为半扩散型相变,高碳马氏体非扩散型相变。

⑤下贝氏体为复相组织,高碳马氏体为单相组织。

三十三、过共析钢淬火加热温度为什么不超过Accm?

过共析钢淬火加热温度为AC1+30~50℃。

加热温度超过Accm时,温度高,容易发生氧化、脱碳;奥氏体晶粒容易粗大,淬火后马氏体粗大,产生显微裂纹,强度下降;渗碳体全部溶解,失去耐磨相,奥氏体中的含碳量高,淬火后残余奥氏体量多,硬度降低、强度降低。

三十四、亚共析钢正火与退火相比哪个硬度高?

为什么?

正火后硬度高。

正火与退火相比,正火的珠光体是在较大的过冷度下得到的,因而对亚共析钢来说,析出的先共析铁素体较少,珠光体数量较多(伪共析),珠光体片间距较小。

此外由于转变温度较低,珠光体成核率较大,因而珠光体团的尺寸较小。

三十五、用T12钢(锻后缓冷)做一切削工具,工艺过程为:

正火→球化退火→机加工成形→淬火→低温回火。

各热处理工艺的目的是什么?

得到什么组织?

各种组织具有什么性能。

1正火:

消除网状的二次渗碳体,同时改善锻造组织、消除锻造应力,得到片状的珠光体,片状的珠光体硬度较高,塑性韧性较差。

2球化退火:

将片状的珠光体变成粒状珠光体,降低硬度,便于机械加工;组织为粒状珠光体,这种组织塑性韧性较好,强度硬度较低。

3淬火:

提高硬度、强度和耐磨性;组织为马氏体+粒状碳化物+残余奥氏体;这种组织具有高强度高硬度,塑性韧性差。

4低温回火:

减少或消除淬火应力,提高塑形和韧性;组织为回火马氏体+粒状碳化物+残余奥氏体。

回火组织有一定的塑性韧性,强度、硬度高,耐磨性高。

三十六、什么是淬火?

目的是什么?

具体工艺有哪些?

简述淬火加热温度的确定原则。

把钢加热到临界点(Ac1或Ac3)以上保温并随之以大于临界冷却速度(Vc)冷却,以得到介稳状态的马氏体或下贝氏体组织的热处理工艺方法称为淬火。

淬火目的:

提高工具、渗碳零件和其它高强度耐磨机器零件等的硬度、强度和耐磨性;结构钢通过淬火和回火之后获得良好的综合机械性能;此外,还有很少数的一部分工件是为了改善钢的物理和化学性能。

如提高磁钢的磁性,不锈钢淬火以消除第二相,从而改善其耐蚀性等。

具体工艺有:

单液淬火法;中断淬火法(双淬火介质淬火法);喷射淬火法;分级淬火法;等温淬火法。

淬火加热温度,主要根据钢的相变点来确定。

对亚共析钢,一般选用淬火加热温度为Ac3+(30~50℃),过共析钢则为Ac1+(30~50℃),合金钢一般比碳钢加热温度高。

确定淬火加热温度时,尚应考虑工件的形状、尺寸、原始组织、加热速度、冷却介质和冷却方式等因素。

在工件尺寸大、加热速度快的情况下,淬火温度可选得高一些。

另外,加热速度快,起始晶粒细,也允许采用较高加热温度。

三十七、某车床主轴(45钢)加工路线为:

下料→锻造→正火→机械加工→淬火(淬透)→高温回火→花键高频表面淬火→低温回火→半精磨→人工时效→精磨。

正火、淬火、高温回火、人工时效的目的是什么?

花键高频表面淬火、低温回火的目的是什么?

表面和心部的组织是什么?

正火处理是为了得到合适的硬度,以便切削加工,同时改善锻造组织,消除锻造应力。

淬火是为了得到高强度的马氏体组织,高温回火是为了得到回火索氏体,淬火+高温回火称为调质,目的是为使主轴得到良好的综合力学性能。

人工时效主要是为了消除粗磨削加工时产生的残余应力。

花键部分用高频淬火后低温回火是为了得到回火马氏体,增加耐磨性。

表面为回火马氏体,心部为回火索氏体组织。

三十八、什么是退火?

目的是什么?

具体工艺有哪些?

正火、退火工艺选用的原则是什么?

将组织偏离平衡状态的金属或合金加热到适当的温度,保持一定时间,然后缓慢冷却以达到接近平衡状态组织的热处理工艺称为退火。

退火的目的在于均匀化学成分、改善机械性能及工艺性能、消除或减少内应力,并为零件最终热处理准备合适的内部组织。

具体工艺有:

扩散退火、完全退火、不完全退火、球化退火、再结晶退火和消除应力退火。

三十九、正火、退火工艺选用的原则是什么?

含0.25%C以下的钢,在没有其它热处理工序时,可用正火来提高强度。

对渗碳钢,用正火消除锻造缺陷及提高切削加工性能。

对含碳0.25~0.50%的钢,一般采用正火。

对含碳0.50~0.75%的钢,一般采用完全退火。

含碳0.75~

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 小升初

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1