初中数感系列专题.docx
《初中数感系列专题.docx》由会员分享,可在线阅读,更多相关《初中数感系列专题.docx(57页珍藏版)》请在冰豆网上搜索。
初中数感系列专题
要按你想的去生活,否则,你迟早会按你生活的去想。
前言
——由薄到厚,再由厚到薄:
分析与综合,发散与收敛的辩证统一
恒等变形是中学代数的基本功,对形的感觉如对称性、结构意识在初高中
那种按部就班的教学模式中很难培养。
恒等变形能力的缺失会让学生在选拔考
中难以出类拔萃,在中高考压轴题上也容易吃亏。
面对计算量大,分类讨论繁
琐的题,对于速度慢的孩子不仅时间不够用,还容易忙中出错。
小册子讲的是代数、函数以及方程不等式恒等变形的结构意识。
这些内容在小册子里的讲法虽然与课堂上讲的不一样,但讲的是同一件事
情。
正如一尊美丽的雕像,从不同的角度看,它是不同的,但都是同一尊雕像。
小册子既注重基础又侧重能力,题目活而不难,巧而不偏,新而不怪。
高观点低起点,从入门到提高,注重思维,培养创新能力,书中很多解题心法
是提升数学实力的不二法门。
读完小册子,回顾一下什么是结构,如何完形填空,核心是有相同特征的
数或式子配对。
这些东西你弄清楚后,便会发现小册子里讲的东西并不多,它
们之间的逻辑关系很简单。
如果你把所有的例题仔细研读完,便会发现这不多
的基本知识,应用起来却很广泛,用得好能帮你解决不少问题。
学数学就是由少到多,再由多到少的过程,这与读书先由薄到厚,在由厚
到薄是一样的道理。
刚开始学新东西容易眼花缭乱,等学通了想透了,你会发
现基本的观点并不多,抓住这么几点感觉就到位了;更进一步,应用你学到的
基本原理去解决问题,你会发现基本原理只有那么几条,应用起来却变化无穷,
而你不知道的知识却如汪洋大海,茫茫无边,这就是知道的越多,不知道的就
越多的道理。
但你不必深陷题海,应当进入下一个学习周期,去学习新的内容。
1
要按你想的去生活,否则,你迟早会按你生活的去想。
前言:
由薄到厚,再由厚到薄——分析与综合,发散与收敛的辩证统一
第一章:
有理数计算入门心法——找片段、定符号、代数和
第二章:
整式加减入门与提高——一步去三重括号、结构意识训练
第三章:
一元一次方程结构意识训练
第四章:
一元一次不等式结构意识训练与检查方法
第五章:
整式乘法结构意识训练与特殊值代入检验法
第六章:
寻找阿喀琉斯之踵——在等待中寻找简算机会。
第七章:
综合除法,待定系数法与双十字相乘法——结构意识的综合提高
第八章:
因式分解之轮换对称——结构意识培养的巅峰
第九章:
较繁琐的整式乘除——交叉线口算各项系数
第十章:
分式——消元、换元、对称性是必杀技
第十一章:
分式难题突破——利用轮换对称破了冲虚道长的太极剑
第十二章:
二次根式——消元、换元、配共轭是好手段
第十三章:
函数与二次不等式——口算函数解析式和不等式解集
第十四章:
三角函数——消元、换元、记住常用数据是纵云梯
第十五章:
综合题——分析结构,填系数,整理结果三步舞曲
第十六章:
关于数感的一些问题
附录:
初高中数学知识存在的“脱节”
后记:
气蒸云梦泽,波撼岳阳城
2
要按你想的去生活,否则,你迟早会按你生活的去想。
第一章:
有理数计算入门心法
单看加减乘除简单,但综合起来未必简单,主要体现在符号糅杂的复杂题。
计算题带上了绝对值,准确度就会成问题。
加减整体去括号的方法是数括号外
负号个数,奇负偶正;乘除同级去括号的方法是数括号外除号个数,奇除偶乘。
找片段,定符号,代数和,这是结构意识的入门功夫,必须修炼到位。
2020
1
例1:
1234561253
673
4
5
2020
1
分析:
此题我们首先找片段123456和
1253
673
4
5
我们把两个大片段的符号确定第一个显然为正,第二个负因数为奇数个积为负。
①常规方法:
第一个片段我们设法直接化归为连乘
2525215
12345614141
3636346
36
5
深入思考abcabcabcabc这是乘除同级去括号的方法。
我们数除号个数奇除偶乘:
2是÷,3是÷,4外面的除号个数2个是÷,5是
11
÷因为外面3个除号,6是÷,然后化归到连乘1346
25
36
5
2020
2020
112019
②第二个片段要配对:
12535
673
4
55
81
81
5
2020
1113681
③再代数和:
原式134652019819
25555
注:
代数和就是省略了加号和括号,包括后面的整式加减都是带符号走的。
3
要按你想的去生活,否则,你迟早会按你生活的去想。
第二章:
整式加减入门与提高
做整式加减很简单就是去括号合并同类项,对于很多学生来说必然是去小
括号,中括号,大括号依次进行的,边去括号边合并会更好。
对于连贯性好的
学生来说一次去掉三重括号是很简单的事情。
有的学生甚至可以把去三重括号
与合并同类项同时进行。
快速处理整式加减三步曲(目的是为了培养结构意识):
1.找出同类项2.合并同类项3.用常规方法或特殊值代入验算。
例1:
2210,求5222324222的值.
若abababababab
化简:
①确定有几种类型的项:
第一类ab23个;第二类a2b2个.
②每类求系数代数和确定同类项系数:
原式显然a2,b1代入得上式8
534ab222a2b4ab2
例2:
23032221.53.
若ababababababab
2,求2222的值
先化简:
①确定有几种类型的项:
第一类a2b2个;第二类ab22个;第三类ab2个.
②每类求系数代数和确定同类项系数:
原式36a2b43ab241ab3a2b7ab23ab
显然a2,b3代入得上式3612618108
4
要按你想的去生活,否则,你迟早会按你生活的去想。
第三章:
一元一次方程结构意识训练
一元一次方程的同类项就两类,配对的原则:
把相同特征的数或式子配对,
培养学生解方程结构意识三步曲:
①去括号与移项:
把简单方程化为最简方程axb,确定a和b
②最小公倍数法去分母与合并同类项③系数化为1(1.定号2.搞清楚谁除以谁)
例2:
1
2
x
1125
xxx
3433
5
6
常规方法分析1:
①两边同时乘2去掉大括号同时去掉小括号得:
x
1115
xx2x
3463
5
3
②同时正(合并)逆(移项)向思维结合得:
x
131
x2x
346
10
3
131
③用整体ax意识倒推得:
346
1
4
x
1
x
18
10
3
④移项合并求解:
5
4
61
x解得:
x
3
122
45
结构意识训练法分析2:
①找出同类项系数代数和,移项的变号:
1
2
11
1x
624
5
6
1
36
5
6
②两边72倍最小公倍数法:
45x122
③系数化为1:
x
122
45
5
要按你想的去生活,否则,你迟早会按你生活的去想。
第四章:
一元一次不等式结构意识训练与检查方法
去分母去括号移项合并同类项系数化1
方程等式性质2乘法分配律等式性质1乘法分配律等式性质2
不等式不等式性质2不等式性质1逆运算不等式性质
2(分正负)
共性在于端点,而不同在于开口,也就是最后一步:
系数化为1
例1:
3x1x1
2<3
84
常规方法分析1:
①两边8倍得:
3x316<242x2
7
②合并同时移项:
3x2x<26195x<7x<
5
结构意识训练法分析2:
31137
①摆结构:
x<32②两边8倍:
5x<7x<
84485
★我们对比方程:
3x1x1
23
84
3113
①摆结构:
2
x3②两边8倍:
8448
5x7x
7
5
☆不等式的检查注意两点1.端点2.开口
Ⅰ.端点的检查与方程一致,把
7
x代入方程和不等式左边为2.9,右边也是2.9
5
Ⅱ.不等式开口检查有两种方法
19
A.代入一个解集范围内不同于端点的数,比如代入x0得:
左,右
8
22
8
开口一致说明没问题.
31
B.比较左右系数左,右,左边大开口与原不等式一致,右边大则相反.
84
6
要按你想的去生活,否则,你迟早会按你生活的去想。
第五章:
整式乘法结构意识训练与特殊值代入检验法
例1:
先化简,再求值2
3x23x25xx12x1,其中x
1
3
常规方法分析1: