六步学会用MATLAB做空间计量回归详细步骤.docx

上传人:b****8 文档编号:27906620 上传时间:2023-07-06 格式:DOCX 页数:26 大小:405.71KB
下载 相关 举报
六步学会用MATLAB做空间计量回归详细步骤.docx_第1页
第1页 / 共26页
六步学会用MATLAB做空间计量回归详细步骤.docx_第2页
第2页 / 共26页
六步学会用MATLAB做空间计量回归详细步骤.docx_第3页
第3页 / 共26页
六步学会用MATLAB做空间计量回归详细步骤.docx_第4页
第4页 / 共26页
六步学会用MATLAB做空间计量回归详细步骤.docx_第5页
第5页 / 共26页
点击查看更多>>
下载资源
资源描述

六步学会用MATLAB做空间计量回归详细步骤.docx

《六步学会用MATLAB做空间计量回归详细步骤.docx》由会员分享,可在线阅读,更多相关《六步学会用MATLAB做空间计量回归详细步骤.docx(26页珍藏版)》请在冰豆网上搜索。

六步学会用MATLAB做空间计量回归详细步骤.docx

六步学会用MATLAB做空间计量回归详细步骤

1.excel与MATLAB链接:

Excel:

选项——加载项——COM加载项——转到——没有勾选项

2.MATLAB安装目录中寻找toolbox——exlink——点击,启用宏

E:

\MATLAB\toolbox\exlink

然后,Excel中就出现MATLAB工具

(注意Excel中的数据:

3.启动matlab

(1)点击startMATLAB

(2)senddatatomatlab,并对变量矩阵变量进行命名(注意:

选取变量为数值,不包括各变量)

(data表中数据进行命名)

(空间权重进行命名)

(3)导入MATLAB中的两个矩阵变量就可以看见

 

4.将elhorst和jplv7两个程序文件夹复制到MATLAB安装目录的toolbox文件夹

 

5.设置路径:

6.输入程序,得出结果

T=30;

N=46;

W=normw(W1);

y=A(:

3);

x=A(:

[4,6]);

xconstant=ones(N*T,1);

[nobsK]=size(x);

results=ols(y,[xconstantx]);

vnames=strvcat('logcit','intercept','logp','logy');

prt_reg(results,vnames,1);

sige=results.sige*((nobs-K)/nobs);

loglikols=-nobs/2*log(2*pi*sige)-1/(2*sige)*results.resid'*results.resid

%The(robust)LMtestsdevelopedbyElhorst

LMsarsem_panel(results,W,y,[xconstantx]);%(Robust)LMtests

解释

每一行分别表示:

该面板数据的时期数为30(T=30),

该面板数据有30个地区(N=30),

将空间权重矩阵标准化(W=normw(w1)),

将名为A(以矩阵形式出现在MATLABA中)的变量的第3列数据定义为被解释变量y,

将名为A的变量的第4、5、6列数据定义为解释变量矩阵x,

定义一个有N*T行,1列的全1矩阵,该矩阵名为:

xconstant,(ones即为全1矩阵)

说明解释变量矩阵x的大小:

有nobs行,K列。

(size为描述矩阵的大小)。

附录:

静态面板空间计量经济学

一、OLS静态面板编程

1、普通面板编程

T=30;

N=46;

W=normw(W1);

y=A(:

3);

x=A(:

[4,6]);

xconstant=ones(N*T,1);

[nobsK]=size(x);

results=ols(y,[xconstantx]);

vnames=strvcat('logcit','intercept','logp','logy');

prt_reg(results,vnames,1);

sige=results.sige*((nobs-K)/nobs);

loglikols=-nobs/2*log(2*pi*sige)-1/(2*sige)*results.resid'*results.resid

%The(robust)LMtestsdevelopedbyElhorst

LMsarsem_panel(results,W,y,[xconstantx]);%(Robust)LMtests

2、空间固定OLS(spatial-fixedeffects)

T=30;

N=46;

W=normw(W1);

y=A(:

3);

x=A(:

[4,6]);

xconstant=ones(N*T,1);

[nobsK]=size(x);

model=1;

[ywith,xwith,meanny,meannx,meanty,meantx]=demean(y,x,N,T,model);

results=ols(ywith,xwith);

vnames=strvcat('logcit','logp','logy');%shouldbechangedifxischanged

prt_reg(results,vnames);

sfe=meanny-meannx*results.beta;%includingtheconstantterm

yme=y-mean(y);

et=ones(T,1);

error=y-kron(et,sfe)-x*results.beta;

rsqr1=error'*error;

rsqr2=yme'*yme;

FE_rsqr2=1.0-rsqr1/rsqr2%r-squaredincludingfixedeffects

sige=results.sige*((nobs-K)/nobs);

logliksfe=-nobs/2*log(2*pi*sige)-1/(2*sige)*results.resid'*results.resid

LMsarsem_panel(results,W,ywith,xwith);%(Robust)LMtests

3、时期固定OLS(time-periodfixedeffects)

T=30;

N=46;

W=normw(W1);

y=A(:

3);

x=A(:

[4,6]);

xconstant=ones(N*T,1);

[nobsK]=size(x);

model=2;

[ywith,xwith,meanny,meannx,meanty,meantx]=demean(y,x,N,T,model);

results=ols(ywith,xwith);

vnames=strvcat('logcit','logp','logy');%shouldbechangedifxischanged

prt_reg(results,vnames);

tfe=meanty-meantx*results.beta;%includingtheconstantterm

yme=y-mean(y);

en=ones(N,1);

error=y-kron(tfe,en)-x*results.beta;

rsqr1=error'*error;

rsqr2=yme'*yme;

FE_rsqr2=1.0-rsqr1/rsqr2%r-squaredincludingfixedeffects

sige=results.sige*((nobs-K)/nobs);

logliktfe=-nobs/2*log(2*pi*sige)-1/(2*sige)*results.resid'*results.resid

LMsarsem_panel(results,W,ywith,xwith);%(Robust)LMtests

4、空间与时间双固定模型

T=30;

N=46;

W=normw(W1);

y=A(:

3);

x=A(:

[4,6]);

xconstant=ones(N*T,1);

[nobsK]=size(x);

model=3;

[ywith,xwith,meanny,meannx,meanty,meantx]=demean(y,x,N,T,model);

results=ols(ywith,xwith);

vnames=strvcat('logcit','logp','logy');%shouldbechangedifxischanged

prt_reg(results,vnames)

en=ones(N,1);

et=ones(T,1);

intercept=mean(y)-mean(x)*results.beta;

sfe=meanny-meannx*results.beta-kron(en,intercept);

tfe=meanty-meantx*results.beta-kron(et,intercept);

yme=y-mean(y);

ent=ones(N*T,1);

error=y-kron(tfe,en)-kron(et,sfe)-x*results.beta-kron(ent,intercept);

rsqr1=error'*error;

rsqr2=yme'*yme;

FE_rsqr2=1.0-rsqr1/rsqr2%r-squaredincludingfixedeffects

sige=results.sige*((nobs-K)/nobs);

loglikstfe=-nobs/2*log(2*pi*sige)-1/(2*sige)*results.resid'*results.resid

LMsarsem_panel(results,W,ywith,xwith);%(Robust)LMtests

二、静态面板SAR模型

1、无固定效应(Nofixedeffects)

T=30;

N=46;

W=normw(W1);

y=A(:

[3]);

x=A(:

[4,6]);

fort=1:

T

t1=(t-1)*N+1;t2=t*N;

wx(t1:

t2,:

)=W*x(t1:

t2,:

);

end

xconstant=ones(N*T,1);

[nobsK]=size(x);

info.lflag=0;

info.model=0;

info.fe=0;

results=sar_panel_FE(y,[xconstantx],W,T,info);

vnames=strvcat('logcit','intercept','logp','logy');

prt_spnew(results,vnames,1)

%Printouteffectsestimates

spat_model=0;

direct_indirect_effects_estimates(results,W,spat_model);

panel_effects_sar(results,vnames,W);

2、空间固定效应(Spatialfixedeffects)

T=30;

N=46;

W=normw(W1);

y=A(:

[3]);

x=A(:

[4,6]);

fort=1:

T

t1=(t-1)*N+1;t2=t*N;

wx(t1:

t2,:

)=W*x(t1:

t2,:

);

end

xconstant=ones(N*T,1);

[nobsK]=size(x);

info.lflag=0;

info.model=1;

info.fe=0;

results=sar_panel_FE(y,x,W,T,info);

vnames=strvcat('logcit','logp','logy');

prt_spnew(results,vnames,1)

%Printouteffectsestimates

spat_model=0;

direct_indirect_effects_estimates(results,W,spat_model);

panel_effects_sar(results,vnames,W);

3、时点固定效应(Timeperiodfixedeffects)

T=30;

N=46;

W=normw(W1);

y=A(:

[3]);

x=A(:

[4,6]);

fort=1:

T

t1=(t-1)*N+1;t2=t*N;

wx(t1:

t2,:

)=W*x(t1:

t2,:

);

end

xconstant=ones(N*T,1);

[nobsK]=size(x);

info.lflag=0;%requiredforexactresults

info.model=2;

info.fe=0;%Donotprintinterceptandfixedeffects;useinfo.fe=1toturnon

results=sar_panel_FE(y,x,W,T,info);

vnames=strvcat('logcit','logp','logy');

prt_spnew(results,vnames,1)

%Printouteffectsestimates

spat_model=0;

direct_indirect_effects_estimates(results,W,spat_model);

panel_effects_sar(results,vnames,W);

4、双固定效应(Spatialandtimeperiodfixedeffects)

T=30;

N=46;

W=normw(W1);

y=A(:

[3]);

x=A(:

[4,6]);

fort=1:

T

t1=(t-1)*N+1;t2=t*N;

wx(t1:

t2,:

)=W*x(t1:

t2,:

);

end

xconstant=ones(N*T,1);

[nobsK]=size(x);

info.lflag=0;%requiredforexactresults

info.model=3;

info.fe=0;%Donotprintinterceptandfixedeffects;useinfo.fe=1toturnon

results=sar_panel_FE(y,x,W,T,info);

vnames=strvcat('logcit','logp','logy');

prt_spnew(results,vnames,1)

%Printouteffectsestimates

spat_model=0;

direct_indirect_effects_estimates(results,W,spat_model);

panel_effects_sar(results,vnames,W);

三、静态面板SDM模型

1、无固定效应(Nofixedeffects)

T=30;

N=46;

W=normw(W1);

y=A(:

[3]);

x=A(:

[4,6]);

fort=1:

T

t1=(t-1)*N+1;t2=t*N;

wx(t1:

t2,:

)=W*x(t1:

t2,:

);

end

xconstant=ones(N*T,1);

[nobsK]=size(x);

info.lflag=0;

info.model=0;

info.fe=0;

results=sar_panel_FE(y,[xconstantxwx],W,T,info);

vnames=strvcat('logcit','intercept','logp','logy','W*logp','W*logy');

prt_spnew(results,vnames,1)

%Printouteffectsestimates

spat_model=1;

direct_indirect_effects_estimates(results,W,spat_model);

panel_effects_sdm(results,vnames,W);

2、空间固定效应(Spatialfixedeffects)

T=30;

N=46;

W=normw(W1);

y=A(:

[3]);

x=A(:

[4,6]);

fort=1:

T

t1=(t-1)*N+1;t2=t*N;

wx(t1:

t2,:

)=W*x(t1:

t2,:

);

end

xconstant=ones(N*T,1);

[nobsK]=size(x);

info.lflag=0;%requiredforexactresults

info.model=1;

info.fe=0;%Donotprintinterceptandfixedeffects;useinfo.fe=1toturnon

results=sar_panel_FE(y,[xwx],W,T,info);

vnames=strvcat('logcit','logp','logy','W*logp','W*logy');

prt_spnew(results,vnames,1)

%Printouteffectsestimates

spat_model=1;

direct_indirect_effects_estimates(results,W,spat_model);

panel_effects_sdm(results,vnames,W);

3、时点固定效应(Timeperiodfixedeffects)

T=30;

N=46;

W=normw(W1);

y=A(:

[3]);

x=A(:

[4,6]);

fort=1:

T

t1=(t-1)*N+1;t2=t*N;

wx(t1:

t2,:

)=W*x(t1:

t2,:

);

end

xconstant=ones(N*T,1);

[nobsK]=size(x);

info.lflag=0;%requiredforexactresults

info.model=2;

info.fe=0;%Donotprintinterceptandfixedeffects;useinfo.fe=1toturnon

%Newroutinestocalculateeffectsestimates

results=sar_panel_FE(y,[xwx],W,T,info);

vnames=strvcat('logcit','logp','logy','W*logp','W*logy');

%Printoutcoefficientestimates

prt_spnew(results,vnames,1)

%Printouteffectsestimates

spat_model=1;

direct_indirect_effects_estimates(results,W,spat_model);

panel_effects_sdm(results,vnames,W)

4、双固定效应(Spatialandtimeperiodfixedeffects)

T=30;

N=46;

W=normw(W1);

y=A(:

[3]);

x=A(:

[4,6]);

fort=1:

T

t1=(t-1)*N+1;t2=t*N;

wx(t1:

t2,:

)=W*x(t1:

t2,:

);

end

xconstant=ones(N*T,1);

[nobsK]=size(x);

info.bc=0;

info.lflag=0;%requiredforexactresults

info.model=3;

info.fe=0;%Donotprintinterceptandfixedeffects;useinfo.fe=1toturnon

results=sar_panel_FE(y,[xwx],W,T,info);

vnames=strvcat('logcit','logp','logy','W*logp','W*logy');

prt_spnew(results,vnames,1)

%Printouteffectsestimates

spat_model=1;

direct_indirect_effects_estimates(results,W,spat_model);

panel_effects_sdm(results,vnames,W)

waldtestspatiallag

%WaldtestforspatialDurbinmodelagainstspatiallagmodel

btemp=results.parm;

varcov=results.cov;

Rafg=zeros(K,2*K+2);

fork=1:

K

Rafg(k,K+k)=1;%R(1,3)=0andR(2,4)=0;

end

Wald_spatial_lag=(Rafg*btemp)'*inv(Rafg*varcov*Rafg')*Rafg*btemp

prob_spatial_lag=1-chis_cdf(Wald_spatial_lag,K)

waldtestspatialerror

%WaldtestspatialDurbinmodelagainstspatialerrormodel

R=zeros(K,1);

fork=1:

K

R(k)=btemp(2*K+1)*btemp(k)+btemp(K+k);%kchangedin1,7/12/2010

%R

(1)=btemp(5)*btemp

(1)+btemp(3);

%R

(2)=btemp(5)*btemp

(2)+btemp(4);

end

Rafg=zeros(K,2*K+2);

fork=1:

K

Rafg(k,k)=btemp(2*K+1);%kchangedin1,7/12/2010

Rafg(k,K+k)=1;

Rafg(k,2*K+1)=btemp(k);

%Rafg(1,1)=btemp(5);Rafg(1,3)=1;Rafg(1,5)=btemp

(1);

%Rafg(2,2)=btemp(5);Rafg(2,4)=1;Rafg(2,5)=btemp

(2);

end

Wald_spatial_error=R'*inv(Rafg*varcov*Rafg')*R

prob_spatial_error=1-chis_cdf(Wald_spatial_error,K)

LRtestspatiallag

resultssar=sar_panel_FE(y,x,W,T,info);

LR_spatial_lag=-2*(resultssar.lik-results.lik)

prob_spatial_lag=1-chis_cdf(LR_spatial_lag,K)

LRtestspatialerror

resultssem=sem_panel_FE(y,x,W,T,info);

LR_spatial_error=-2*(resultssem.lik-results.lik)

prob_spatial_error=1-chis_cdf(LR_spatial_error,K)

5、空间随机效应与时点固定效应模型

T=30;

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 计算机软件及应用

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1