ImageVerifierCode 换一换
格式:DOCX , 页数:26 ,大小:405.71KB ,
资源ID:27906620      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/27906620.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(六步学会用MATLAB做空间计量回归详细步骤.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

六步学会用MATLAB做空间计量回归详细步骤.docx

1、六步学会用MATLAB做空间计量回归详细步骤1.excel与MATLAB链接:Excel:选项加载项COM加载项转到没有勾选项 2. MATLAB安装目录中寻找toolboxexlink点击,启用宏 E:MATLABtoolboxexlink然后,Excel中就出现MATLAB工具(注意Excel中的数据:)3.启动matlab(1) 点击start MATLAB(2) senddata to matlab ,并对变量矩阵变量进行命名(注意:选取变量为数值,不包括各变量)(data表中数据进行命名)(空间权重进行命名)(3) 导入MATLAB中的两个矩阵变量就可以看见4.将elhorst和jp

2、lv7两个程序文件夹复制到MATLAB安装目录的toolbox文件夹5.设置路径:6.输入程序,得出结果T=30; N=46; W=normw(W1); y=A(:,3); x=A(:,4,6); xconstant=ones(N*T,1);nobs K=size(x);results=ols(y,xconstant x);vnames=strvcat(logcit,intercept,logp,logy);prt_reg(results,vnames,1);sige=results.sige*(nobs-K)/nobs);loglikols=-nobs/2*log(2*pi*sige)-1/

3、(2*sige)*results.resid*results.resid% The (robust)LM tests developed by ElhorstLMsarsem_panel(results,W,y,xconstant x); % (Robust) LM tests解释每一行分别表示:该面板数据的时期数为30(T=30),该面板数据有30个地区(N=30),将空间权重矩阵标准化(W=normw(w1)),将名为A(以矩阵形式出现在MATLABA中)的变量的第3列数据定义为被解释变量y,将名为A的变量的第4、5、6列数据定义为解释变量矩阵x,定义一个有N*T行,1列的全1矩阵,该矩阵

4、名为:xconstant,(ones即为全1矩阵)说明解释变量矩阵x的大小:有nobs行,K列。(size为描述矩阵的大小)。附录:静态面板空间计量经济学一、OLS静态面板编程1、普通面板编程T=30; N=46; W=normw(W1); y=A(:,3); x=A(:,4,6); xconstant=ones(N*T,1);nobs K=size(x);results=ols(y,xconstant x);vnames=strvcat(logcit,intercept,logp,logy);prt_reg(results,vnames,1);sige=results.sige*(nobs-

5、K)/nobs);loglikols=-nobs/2*log(2*pi*sige)-1/(2*sige)*results.resid*results.resid% The (robust)LM tests developed by ElhorstLMsarsem_panel(results,W,y,xconstant x); % (Robust) LM tests2、空间固定OLS (spatial-fixed effects)T=30; N=46; W=normw(W1); y=A(:,3); x=A(:,4,6); xconstant=ones(N*T,1);nobs K=size(x);

6、model=1;ywith,xwith,meanny,meannx,meanty,meantx=demean(y,x,N,T,model);results=ols(ywith,xwith);vnames=strvcat(logcit,logp,logy); % should be changed if x is changedprt_reg(results,vnames);sfe=meanny-meannx*results.beta; % including the constant termyme = y - mean(y);et=ones(T,1);error=y-kron(et,sfe)

7、-x*results.beta;rsqr1 = error*error;rsqr2 = yme*yme;FE_rsqr2 = 1.0 - rsqr1/rsqr2 % r-squared including fixed effectssige=results.sige*(nobs-K)/nobs);logliksfe=-nobs/2*log(2*pi*sige)-1/(2*sige)*results.resid*results.residLMsarsem_panel(results,W,ywith,xwith); % (Robust) LM tests3、时期固定OLS(time-period

8、fixed effects)T=30; N=46; W=normw(W1); y=A(:,3); x=A(:,4,6); xconstant=ones(N*T,1);nobs K=size(x);model=2;ywith,xwith,meanny,meannx,meanty,meantx=demean(y,x,N,T,model);results=ols(ywith,xwith);vnames=strvcat(logcit,logp,logy); % should be changed if x is changedprt_reg(results,vnames);tfe=meanty-mea

9、ntx*results.beta; % including the constant termyme = y - mean(y);en=ones(N,1);error=y-kron(tfe,en)-x*results.beta;rsqr1 = error*error;rsqr2 = yme*yme;FE_rsqr2 = 1.0 - rsqr1/rsqr2 % r-squared including fixed effectssige=results.sige*(nobs-K)/nobs);logliktfe=-nobs/2*log(2*pi*sige)-1/(2*sige)*results.r

10、esid*results.residLMsarsem_panel(results,W,ywith,xwith); % (Robust) LM tests4、空间与时间双固定模型T=30; N=46; W=normw(W1); y=A(:,3); x=A(:,4,6); xconstant=ones(N*T,1);nobs K=size(x);model=3;ywith,xwith,meanny,meannx,meanty,meantx=demean(y,x,N,T,model);results=ols(ywith,xwith);vnames=strvcat(logcit,logp,logy);

11、 % should be changed if x is changedprt_reg(results,vnames)en=ones(N,1);et=ones(T,1);intercept=mean(y)-mean(x)*results.beta; sfe=meanny-meannx*results.beta-kron(en,intercept);tfe=meanty-meantx*results.beta-kron(et,intercept);yme = y - mean(y);ent=ones(N*T,1);error=y-kron(tfe,en)-kron(et,sfe)-x*resul

12、ts.beta-kron(ent,intercept);rsqr1 = error*error;rsqr2 = yme*yme;FE_rsqr2 = 1.0 - rsqr1/rsqr2 % r-squared including fixed effectssige=results.sige*(nobs-K)/nobs);loglikstfe=-nobs/2*log(2*pi*sige)-1/(2*sige)*results.resid*results.residLMsarsem_panel(results,W,ywith,xwith); % (Robust) LM tests二、静态面板SAR

13、模型1、无固定效应(No fixed effects)T=30; N=46; W=normw(W1);y=A(:,3);x=A(:,4,6); for t=1:T t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);endxconstant=ones(N*T,1);nobs K=size(x);info.lflag=0; info.model=0;info.fe=0; results=sar_panel_FE(y,xconstant x,W,T,info); vnames=strvcat(logcit,intercept,logp,logy);prt_s

14、pnew(results,vnames,1)% Print out effects estimatesspat_model=0;direct_indirect_effects_estimates(results,W,spat_model);panel_effects_sar(results,vnames,W);2、空间固定效应(Spatial fixed effects)T=30; N=46; W=normw(W1);y=A(:,3);x=A(:,4,6); for t=1:T t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);endxconstant

15、=ones(N*T,1);nobs K=size(x);info.lflag=0;info.model=1;info.fe=0; results=sar_panel_FE(y,x,W,T,info); vnames=strvcat(logcit,logp,logy);prt_spnew(results,vnames,1)% Print out effects estimatesspat_model=0;direct_indirect_effects_estimates(results,W,spat_model);panel_effects_sar(results,vnames,W);3、时点固

16、定效应(Time period fixed effects)T=30; N=46; W=normw(W1);y=A(:,3);x=A(:,4,6); for t=1:T t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);endxconstant=ones(N*T,1);nobs K=size(x);info.lflag=0; % required for exact resultsinfo.model=2;info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to tu

17、rn onresults=sar_panel_FE(y,x,W,T,info); vnames=strvcat(logcit,logp,logy);prt_spnew(results,vnames,1)% Print out effects estimatesspat_model=0;direct_indirect_effects_estimates(results,W,spat_model);panel_effects_sar(results,vnames,W);4、双固定效应(Spatial and time period fixed effects)T=30; N=46; W=normw

18、(W1);y=A(:,3);x=A(:,4,6); for t=1:T t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);endxconstant=ones(N*T,1);nobs K=size(x);info.lflag=0; % required for exact resultsinfo.model=3;info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn onresults=sar_panel_FE(y,x,W,T,info); vnames=s

19、trvcat(logcit,logp,logy);prt_spnew(results,vnames,1)% Print out effects estimatesspat_model=0;direct_indirect_effects_estimates(results,W,spat_model);panel_effects_sar(results,vnames,W);三、静态面板SDM模型1、无固定效应(No fixed effects)T=30; N=46; W=normw(W1);y=A(:,3);x=A(:,4,6); for t=1:T t1=(t-1)*N+1;t2=t*N; wx

20、(t1:t2,:)=W*x(t1:t2,:);endxconstant=ones(N*T,1);nobs K=size(x);info.lflag=0; info.model=0;info.fe=0; results=sar_panel_FE(y,xconstant x wx,W,T,info); vnames=strvcat(logcit,intercept,logp,logy,W*logp,W*logy);prt_spnew(results,vnames,1)% Print out effects estimatesspat_model=1;direct_indirect_effects_

21、estimates(results,W,spat_model);panel_effects_sdm(results,vnames,W);2、空间固定效应(Spatial fixed effects)T=30; N=46; W=normw(W1);y=A(:,3);x=A(:,4,6); for t=1:T t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);endxconstant=ones(N*T,1);nobs K=size(x);info.lflag=0; % required for exact resultsinfo.model=1;info.

22、fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn onresults=sar_panel_FE(y,x wx,W,T,info); vnames=strvcat(logcit,logp,logy,W*logp,W*logy);prt_spnew(results,vnames,1)% Print out effects estimatesspat_model=1;direct_indirect_effects_estimates(results,W,spat_model);panel_effects_s

23、dm(results,vnames,W);3、时点固定效应(Time period fixed effects)T=30; N=46; W=normw(W1);y=A(:,3);x=A(:,4,6); for t=1:T t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);endxconstant=ones(N*T,1);nobs K=size(x);info.lflag=0; % required for exact resultsinfo.model=2;info.fe=0; % Do not print intercept and fixed ef

24、fects; use info.fe=1 to turn on% New routines to calculate effects estimatesresults=sar_panel_FE(y,x wx,W,T,info); vnames=strvcat(logcit,logp,logy,W*logp,W*logy);% Print out coefficient estimatesprt_spnew(results,vnames,1)% Print out effects estimatesspat_model=1;direct_indirect_effects_estimates(re

25、sults,W,spat_model);panel_effects_sdm(results,vnames,W)4、双固定效应(Spatial and time period fixed effects)T=30; N=46; W=normw(W1);y=A(:,3);x=A(:,4,6); for t=1:T t1=(t-1)*N+1;t2=t*N; wx(t1:t2,:)=W*x(t1:t2,:);endxconstant=ones(N*T,1);nobs K=size(x);info.bc=0;info.lflag=0; % required for exact resultsinfo.m

26、odel=3;info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn onresults=sar_panel_FE(y,x wx,W,T,info); vnames=strvcat(logcit,logp,logy,W*logp,W*logy);prt_spnew(results,vnames,1)% Print out effects estimatesspat_model=1;direct_indirect_effects_estimates(results,W,spat_model);pan

27、el_effects_sdm(results,vnames,W)wald test spatial lag% Wald test for spatial Durbin model against spatial lag modelbtemp=results.parm;varcov=results.cov;Rafg=zeros(K,2*K+2);for k=1:K Rafg(k,K+k)=1; % R(1,3)=0 and R(2,4)=0;endWald_spatial_lag=(Rafg*btemp)*inv(Rafg*varcov*Rafg)*Rafg*btempprob_spatial_

28、lag=1-chis_cdf (Wald_spatial_lag, K)wald test spatial error% Wald test spatial Durbin model against spatial error modelR=zeros(K,1);for k=1:K R(k)=btemp(2*K+1)*btemp(k)+btemp(K+k); % k changed in 1, 7/12/2010% R(1)=btemp(5)*btemp(1)+btemp(3);% R(2)=btemp(5)*btemp(2)+btemp(4);endRafg=zeros(K,2*K+2);f

29、or k=1:K Rafg(k,k) =btemp(2*K+1); % k changed in 1, 7/12/2010 Rafg(k,K+k) =1; Rafg(k,2*K+1)=btemp(k);% Rafg(1,1)=btemp(5);Rafg(1,3)=1;Rafg(1,5)=btemp(1);% Rafg(2,2)=btemp(5);Rafg(2,4)=1;Rafg(2,5)=btemp(2);end Wald_spatial_error=R*inv(Rafg*varcov*Rafg)*Rprob_spatial_error=1-chis_cdf (Wald_spatial_err

30、or,K)LR test spatial lagresultssar=sar_panel_FE(y,x,W,T,info); LR_spatial_lag=-2*(resultssar.lik-results.lik)prob_spatial_lag=1-chis_cdf (LR_spatial_lag,K) LR test spatial errorresultssem=sem_panel_FE(y,x,W,T,info); LR_spatial_error=-2*(resultssem.lik-results.lik)prob_spatial_error=1-chis_cdf (LR_spatial_error,K) 5、空间随机效应与时点固定效应模型T=30;

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1