IChO41th理论试题及答案.docx

上传人:b****8 文档编号:27870585 上传时间:2023-07-05 格式:DOCX 页数:40 大小:524.15KB
下载 相关 举报
IChO41th理论试题及答案.docx_第1页
第1页 / 共40页
IChO41th理论试题及答案.docx_第2页
第2页 / 共40页
IChO41th理论试题及答案.docx_第3页
第3页 / 共40页
IChO41th理论试题及答案.docx_第4页
第4页 / 共40页
IChO41th理论试题及答案.docx_第5页
第5页 / 共40页
点击查看更多>>
下载资源
资源描述

IChO41th理论试题及答案.docx

《IChO41th理论试题及答案.docx》由会员分享,可在线阅读,更多相关《IChO41th理论试题及答案.docx(40页珍藏版)》请在冰豆网上搜索。

IChO41th理论试题及答案.docx

IChO41th理论试题及答案

ProblemAuthors

StephenAshworthUniversityofEastAnglia

JonathanBurtonUniversityofOxford

JonDilworthUniversityofOxford

NicholasGreenUniversityofOxford

PhilipMountfordUniversityofOxford

WilliamNolanUniversityofCambridge

JeremyRawsonUniversityofCambridge

KathrynScottUniversityofOxford

MalcolmSeddonUniversityofEastAnglia

SimonTitmussUniversityofOxford

ClaireVallanceUniversityofOxford

PeterWothersUniversityofCambridge

FieldsofAdvancedDifficulty

Theoretical

Kinetics:

integratedfirst-orderrateequation;analysisofmoderatelycomplexreactionsmechanismsusingthesteadystateapproximation,theuseoftheArrheniusequation,simplecollisiontheory

Thermodynamics:

electrochemicalcells,therelationshipbetweenequilibriumconstants,electromotiveforceandstandardGibbsenergy,thevariationoftheequilibriumconstantwithtemperature

Quantummechanics:

calculationoforbitalandspinangularmomentum,calculationofthemagneticmomentusingthespin-onlyformula

Spectroscopy:

interpretationofrelativelysimple13Cand1HNMRspectra;chemicalshifts,multiplicities,couplingconstantsandintegrals

Massspectrometry:

molecularionsandbasicfragmentation

Theoreticalproblems

Problem1Datingmoonrock

TheageofrockscollectedfromthemoonontheApollo16missionhasbeendeterminedfromthe87Rb/86Srand87Sr/86Srratiosofdifferentmineralsfoundinthesample.

Mineral

87Rb/86Sr

87Sr/86Sr

A(Plagioclase)

0.004

0.699

B(Quintessence)

0.180

0.709

a)87Rbisa–emitter,writedowntheequationofnucleardecay.Thehalf-lifeforthisdecayis4.8×1010years.

b)Calculatetheageoftherock.Youcanassumethattheinitial87Sr/86SristhesameinAandBandthat87Srand86Srarestable.

Problem2Snorkelling

Thepressureofagasmaybethoughtofastheforcethegasexertsperunitareaonthewallsofitscontainer,oronanimaginarysurfaceofunitareaplacedsomewherewithinthegas.Theforcearisesfromcollisionsbetweentheparticlesinthegasandthesurface.Inanidealgas,thecollisionfrequency(numberofcollisionspersecond)withasurfaceofunitareaisgivenby:

WherepisthepressureandTthetemperatureofthegas,misthemassofthegasparticles,andkBistheBoltzmann’sconstant(kB=1.38×10–23JK–1).

Atsealevel,atmosphericpressureisgenerallyaround101.3kPa,andtheaveragetemperatureonatypicalBritishsummerdayis15°C.

a)Usingtheapproximationthatairconsistsof79%nitrogenand21%oxygen,calculatetheweightedaverage massofamoleculeintheair.

b)Humanlungshaveasurfaceareaofapproximately75m2.Anaveragehumanbreathtakesaround5seconds.EstimatethenumberofcollisionswiththesurfaceofthelungsduringasinglebreathonatypicalBritishsummerday.Youshouldassumethatthepressureinthelungsremainsconstantatatmosphericpressure;thisisareasonableapproximation,asthepressureinthelungschangesbylessthan1%duringeachrespiratorycycle.

Thehumanlungscanoperateagainstapressuredifferentialofuptoonetwentiethofatmosphericpressure.Ifadiverusesasnorkelforbreathing,wecanusethisfacttodeterminehowfarbelowwaterthesurfaceofthewatershecanswim.

Thepressureexperiencedbythediveradistancedbelowthesurfaceofthewaterisdeterminedbytheforceperunitareaexertedbythemassofwateraboveher.TheforceexertedbygravityonamassmisF=mg,whereg=9.8ms–2istheaccelerationduetogravity.

c)WritedownanexpressionforthemassofavolumeofwaterwithcrosssectionalareaAanddepthd.

d)Deriveanexpressionfortheforceexertedonthediverbythevolumeofwaterin(c),andhenceanexpressionforthedifferenceinpressuresheexperiencesatdepthdrelativetothepressureatthewater’ssurface.

e)Calculatethemaximumdepththedivercanswimbelowthewatersurface,whilestillbreathingsuccessfullythroughasnorkel.

Problem3Idealandnot-so-idealgases

Theforceagasexertsonthewallsofitscontainerarisesfromcollisionsbetweentheparticlesinthegasandthesurface.Inasinglecollision,themagnitudeoftheimpulsiveoftheforceexertedonthesurfaceisequaltothechangeinthemomentumnormaltothesurface,m∆v.Theforceonthesurfaceisthentheimpulse,multipliedbytherateatwhichtheparticlescollidewiththesurface.

Sincethemotionofparticleswithinagasisrandom,thenumberofcollisionsoccurringperunittimeisaconstantforagasatconstanttemperature.

Thetemperatureofagasreflectsthedistributionofparticlevelocitieswithinthegas.Foragivengas,theparticlespeedswillbehigher,onaverage,athighertemperatures.

a)Giventheaboveinformation,andassumingthegasisinitiallyatroomtemperatureandatmosphericpressure,considerhowcarryingoutthefollowingactionswouldbelikelytoaffectthepressure.Wouldthepressuredouble,halve,increaseslightly,decreaseslightly,orremainunchanged?

i)Doublingthenumberofparticlesinthegas.

ii)Doublingthevolumeofthecontainerinwhichthegasisconfined.

iii)Doublingthemassoftheparticlesinthegas(assumethattheparticlevelocitiesremainconstant).

iv)Increasingthetemperatureby10°C.

Theidealgasmodelassumesthattherearenointeractionsbetweengasparticles.Particlesinarealgasdointeractthrougharangeofforcessuchasdipole–dipoleforces,dipole–induced–dipoleforces,andvanderWaalsinteractions(induced–dipole–induced–dipoleforces).Atypicalcurveshowingthepotentialenergyofinteractionbetweentwoparticlesisshownright:

Theforcebetweentwoparticlesinagasatagivenseparationrmaybecalculatedfromthegradientofthepotentialenergycurvei.e.F=–dV/dr.

b)WhatistheforceatthefourpointsmarkedA,B,CandDonthefigure?

(attractive/repulsive/approximatelyzero)

Thedeviationfromnon-idealityinagasisoftenquantifiedintermsofthecompressionratio,Z.

where

isthemolarvolumeofthe(real)gas,and

isthemolarvolumeofanidealgasunderthesameconditionsoftemperature,pressureetc.

c)MatchthefollowingvaluesofZwiththedominanttypeofinteractioninthegas.

[Z=1][Z<1][Z>1]

Attractiveforcesdominate

Repulsiveforcesdominate

Nointermolecularforces,idealgasbehaviour

d)Thecompressionratioispressuredependent.Considertheaverageseparationbetweenparticlesinagasatdifferentpressures(rangingfromextremelylowpressuretoextremelyhighpressure),andtheregionsoftheintermolecularpotentialthattheseseparationscorrespondto.Sketchthewayinwhichyouthinkthecompressionratiowillvarywithpressureonthesetofaxesbelow.[Note:

donotworryabouttheactualnumericalvaluesofZ;thegeneralshapeofthepressuredependencecurveisallthatisrequired.]

Problem4

Coalgasification

Intheprocessofcoalgasificationcoalisconvertedintoacombustiblemixtureofcarbonmonoxideandhydrogen,calledcoalgas

H2O(g)+C(s)CO(g)+H2(g)

a)Calculatethestandardenthalpychangeforthisreactionfromthefollowingchemicalequationsandstandardenthalpychanges

2C(s)+O2(g)2CO(g)∆rH=–221.0kJmol–1

2H2(g)+O2(g)2H2O(g)∆rH=–483.6kJmol–1

Thecoalgascanbeusedasafuel:

CO(g)+H2(g)+O2(g)CO2(g)+H2O(g)

b)Giventheadditionalinformation,calculatetheenthalpychangeforthiscombustion

C(s)+O2(g)CO2(g)∆rH=–393.5kJmol–1

Coalgascanalsoundergotheprocessofmethanation.

3H2(g)+CO(g)CH4(g)+H2O(g)

c)Determinethestandardenthalpychangeforthemethanationreactionusingtheadditionaldata.

CH4(g)+2O2(g)CO2(g)+2H2O(g)∆rH=–802.7kJmol–1

Problem5Theindustrialpreparationofhydrogen

Hydrogengasmaybepreparedindustriallybyheatinghydrocarbons,suchasamethane,withsteam:

CH4(g)+H2O(g)

3H2(g)+CO(g)A

a)Giventhefollowingthermodynamicdata,calculatethe∆rGforreactionAat298Kandhenceavaluefortheequilibriumconstant,Kp.

∆fH(298)/kJmol–1

S(298)/JK–1mol–1

CH4(g)

–74.4

186.3

H2O(g)

–241.8

188.8

H2(g)

130.7

CO(g)

–110.5

197.7

b)Howwilltheequilibriumconstantvarywithtemperature?

Theindustrialpreparationcanbecarriedoutatatmosphericpressureandhightemperature,withoutacatalyst.Typically,0.2vol%ofmethanegasremainsinthemixtureatequilibrium.

c)Assumingthereactionstartedwithequalvolumesofmethaneandsteam,calculatethevalueofKpfortheindustrialprocesswhichgives0.2vol%methaneatequilibrium.

d)Useyouranswerfrom(c)togetherwiththeintegratedformofthevan’tHoffisochoretoestimatethetemperatureusedinindustryforthepreparationofhydrogenfrommethane.

Problem6Thebondsindibenzyl

Thisquestionisatypicalapplicationofthermodynamiccyclestoestimateabonddissociationenthalpy.

Thefirststepinthepyrolysisoftoluene(methylbenzene)isthebreakingoftheC6H5CH2–Hbond.Theactivationenthalpyforthisprocess,whichisessentiallythebonddissociationenthalpy,isfoundtobe378.4kJmol–1.

a)Writeabalancedequationforthecompletecombustionoftoluene.

Standardenthalpiesaregivenbelow,usingtherecommendedIUPACnotation(i.e.f=formation,c=combustion,vap=vaporisation,at=atomisation)

∆fH(CO2,g,298K)=–393.5kJmol–1

∆fH(H2O,l,298K)=–285.8kJmol–1

∆cH(C7H8,l,298K)=–3910.2kJmol–1

∆vapH(C7H8,l,298K)=+38.0kJmol–1

∆atH(H2,g,298K)=+436.0kJmol–1.

i)Calculate∆fH(C7H8,l,298K)

ii)Estimate∆fHforthebenzylradicalC6H5CH2·(g)at298K.

b)Thestandardentropyofvapori

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1