Energy Use and Savings Potential for Laboratory Fume Hoods.docx

上传人:b****5 文档编号:2780541 上传时间:2022-11-15 格式:DOCX 页数:19 大小:27.42KB
下载 相关 举报
Energy Use and Savings Potential for Laboratory Fume Hoods.docx_第1页
第1页 / 共19页
Energy Use and Savings Potential for Laboratory Fume Hoods.docx_第2页
第2页 / 共19页
Energy Use and Savings Potential for Laboratory Fume Hoods.docx_第3页
第3页 / 共19页
Energy Use and Savings Potential for Laboratory Fume Hoods.docx_第4页
第4页 / 共19页
Energy Use and Savings Potential for Laboratory Fume Hoods.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

Energy Use and Savings Potential for Laboratory Fume Hoods.docx

《Energy Use and Savings Potential for Laboratory Fume Hoods.docx》由会员分享,可在线阅读,更多相关《Energy Use and Savings Potential for Laboratory Fume Hoods.docx(19页珍藏版)》请在冰豆网上搜索。

Energy Use and Savings Potential for Laboratory Fume Hoods.docx

EnergyUseandSavingsPotentialforLaboratoryFumeHoods

1

EnergyUseandSavingsPotentialforLaboratoryFumeHoods

EvanMills,Ph.D.

Mailstop90-4000

LawrenceBerkeleyNationalLaboratory

EnergyAnalysisDepartment

UniversityofCalifornia

Berkeley,California94720USA

emills@lbl.gov

DaleSartor,P.E.

Mailstop90-3111

LawrenceBerkeleyNationalLaboratory

ApplicationsTeam

UniversityofCalifornia

Berkeley,California94720USA

dasartor@lbl.gov

April2006

LBNL-554002

Abstract

Fumehoodsarecriticalenergyend-usedevices,typicallyrelieduponastheprimary

sourceofventilationinlaboratory-typefacilitieswhileprovidingforsafeconditionsin

areaswhereexperimentsarebeingconducted,Fumehoodscreatelargeamountsof

airflow,whichdrivestheoverallHVACsizingandenergyrequirementsofthebuildings

inwhichtheyarelocated.Forstandardtwo-meter(six-foot)hoods,per-hoodenergycosts

rangefrom$4,600formoderateclimatessuchasLosAngeles,USAto$9,300/yearfor

extremecoolingclimatessuchasSingapore.Withanestimated750,000hoodsinusein

theU.S.,theaggregateenergyuseandsavingspotentialissignificant.Weestimatethe

annualoperatingcostofU.S.fumehoodsatapproximately$4.2billion,witha

correspondingpeakelectricaldemandof5,100megawatts.Therearevariousstrategies

forsavingenergy,eachwithitslimitations.Withemergingtechnologies,per-hood

savingsof50percentto75percentcanbesafelyandcost-effectivelyachievedwhile

addressingthelimitationsofexistingstrategies.

Introduction

Effortstoimproveenergyefficiencymustattendtoahostof“non-energy”

considerations,primarilysafety.Inmanycases,non-energybenefitscanprovidean

additionalimpetusfortechnologyinnovationbeyondthevalueofdirectenergysavings

(MillsandRosenfeld1996;PyeandMcKane1999;Worrelletal.2003).Thisiscertainly

thecasewithlaboratoryfumehoods.

Fumehoodsarebox-likestructures,oftenmountedattabletoplevelwithamovable

window-likefrontcalledasash.Fumehoodscapture,contain,andexhaustairborne

hazardousmaterials,whicharedrawnoutofthehoodbyfansthroughaportatthetopof

thehood.Laboratoryfumehoodsareubiquitousinpharmaceuticalandbiotechnology

facilities,industrialshops,medicaltestinglabs,privateresearchlabs,andacademic

settings.Theirfundamentaldesignhasgonelargelyunchangedforthepast60years

(Saunders1993).

AsdepictedinFigure1,overallfumehoodenergyuseistheproductofanumberof

supportsystems,including:

supplyandexhaustfans,space-coolingenergy,space-heating

energy,and(insomecases)humidificationorde-humidificationandterminalreheat.We

developedanengineeringmodel(Figure2)toperformbaselineanalysisandtesttheperhoodandnationalimpactsofenergyefficiencyimprovements.

1

Figure1.Typicalfume

hoodcross-section,

applicationandrelation

toHVACsystem(TekAir

2003).

1

Anon-linecalculatorbasedonourmethodologymaybefoundathttp:

//fumehoodcalculator.lbl.gov3

Figure2.Web-basedfumehoodenergyusemodel.

Highlightingthe“systemsnature”offumehooddesignandapplication,hoodsrequire

largeamountsofairflowthattendtodrivethesize,andfirstcostofcentralheating,

ventilatingandair-conditioning(HVAC)systemsinbuildingswherehoodsarelocated.

Asaresult,fumehoodsareamajorfactorinmakingtypicallaboratoriesfour-tofivetimesmoreenergyintensivethantypicalcommercialbuildings(Belletal.2002).Afume

hoodconsumes3.5-timesmoreenergythananaveragehouse.With0.5to1.5million

hoodsinuseintheU.S.(“central”estimate750,000),aggregateenergyuseandsavings

potentialissignificant.Aswillbedescribedbelow,theannualoperatingcostofU.S.

fumehoodsis$4.2billionwithcorrespondingelectricityuseof26TWh,peakelectrical

demandof5,100megawatts,and204Petajoules(193TBTU)ofheatingfuel.

Furtheramplifyingtheneedtoimprovefumehooddesign,recentresearchshowsthat

increasingtheamountandrateofairflow(and,consequently,energyuse)doesnottend

toimprovecontainment.Instead,erranteddycurrentsandvortexescanbeinduced

aroundhoodusersasairflowsaroundworkersandintothehood,reducingcontainment

effectivenessandcompromisingsafety(Belletal.2002).4

BaselineEnergyUseandAnalysisofPotentialSavings

Wehavemodeledtheenergyuseandpotentialsavingsonaper-hoodbasisacrossa

varietyofweatherlocationsaroundtheglobe.Totalenergycostsaremoresensitivetothe

coolingload.Ourcalculationsaccountfortheheating,cooling,andmovementofair

throughthefumehood,andtheassociatedpricesofelectricity,peakelectricitydemand,

andfuel.Dependingonclimate,estimatedcostsrangefrom$100to$325/m

3

-minute($3

to$11/cfm).

Weassumethehoodha

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1