氨基酸种类文档19页word.docx
《氨基酸种类文档19页word.docx》由会员分享,可在线阅读,更多相关《氨基酸种类文档19页word.docx(15页珍藏版)》请在冰豆网上搜索。
氨基酸种类文档19页word
20种蛋白质氨基酸在结构上的差别取决于侧链基团R的不同。
通常根据R基团的化学结构或性质将20种氨基酸进行分类
根据侧链基团的极性
1、非极性氨基酸(疏水氨基酸)8种
丙氨酸(Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)脯氨酸(Pro)苯丙氨酸(Phe)
色氨酸(Trp)蛋氨酸(Met)
2、极性氨基酸(亲水氨基酸):
1)极性不带电荷:
7种
甘氨酸(Gly)丝氨酸(Ser)苏氨酸(Thr)半胱氨酸(Cys)
酪氨酸(Tyr)天冬酰胺(Asn)谷氨酰胺(Gln)
2)极性带正电荷的氨基酸(碱性氨基酸)3种赖氨酸(Lys)精氨酸(Arg)组氨酸(His)
3)极性带负电荷的氨基酸(酸性氨基酸)2种天冬氨酸(Asp)谷氨酸(Glu)
根据氨基酸分子的化学结构
1、脂肪族氨基酸:
丙、缬、亮、异亮、蛋、天冬、谷、赖、精、甘、丝、苏、半胱、天冬酰胺、谷氨酰胺
2、 芳香族氨基酸:
苯丙氨酸、酪氨酸
3、杂环族氨基酸:
组氨酸、色氨酸
4、杂环亚氨基酸:
脯氨酸
从营养学的角度
1、必需氨基酸(essentialaminoacid):
指人体(或其它脊椎动物)不能合成或合成速度远不适应机体的需要,必需由食物蛋白供给,这些氨基酸称为必需氨基酸。
成人必需氨基酸的需要量约为蛋白质需要量的20%~37%。
共有8种其作用分别是:
赖氨酸:
促进大脑发育,是肝及胆的组成成分,能促进脂肪代谢,调节松果腺、乳腺、黄体及卵巢,防止细胞退化;
色氨酸:
促进胃液及胰液的产生;
苯丙氨酸:
参与消除肾及膀胱功能的损耗;
蛋氨酸(甲硫氨酸):
参与组成血红蛋白、组织与血清,有促进脾脏、胰脏及淋巴的功能;
苏氨酸:
有转变某些氨基酸达到平衡的功能;
异亮氨酸:
参与胸腺、脾脏及脑下腺的调节以及代谢;脑下腺属总司令部作用于甲状腺、性腺;
亮氨酸:
作用平衡异亮氨酸;
缬氨酸:
作用于黄体、乳腺及卵巢。
2、半必需氨基酸和条件必需氨基酸:
精氨酸:
精氨酸与脱氧胆酸制成的复合制剂(明诺芬)是主治梅毒、病毒性黄疸等病的有效药物。
组氨酸:
可作为生化试剂和药剂,还可用于治疗心脏病,贫血,风湿性关节炎等的药物。
人体虽能够合成精氨酸和组氨酸,但通常不能满足正常的需要,因此,又被称为半必需氨基酸或条件必需氨基酸,在幼儿生长期这两种是必需氨基酸。
人体对必需氨基酸的需要量随着年龄的增加而下降,成人比婴儿显著下降。
(近年很多资料和教科书将组氨酸划入成人必需氨基酸)
3、非必需氨基酸(nonessentialaminoacid):
指人(或其它脊椎动物)自己能由简单的前体合成,不需要从食物中获得的氨基酸。
例如甘氨酸、丙氨酸等氨基酸。
编辑本段氨基酸的缩写符号
名称
三字符号
单字符号
丙氨酸
Ala
A
精氨酸
Arg
R
天冬氨酸
Asp
D
半胱氨酸
Cys
C
谷氨酰胺
Gln
Q
谷氨酸
Glu/Gln
E
组氨酸
His
H
异亮氨酸
Ile
I
甘氨酸
Gly
G
名称
三字符号
单字符号
天冬酰胺
Asn
N
亮氨酸
Leu
L
赖氨酸
Lys
K
甲硫氨酸
Met
M
苯丙氨酸
Phe
F
脯氨酸
Pro
P
丝氨酸
Ser
S
苏氨酸
Thr
T
色氨酸
Trp
W
名称
三字符号
单字符号
酪氨酸
Tyr
Y
缬氨酸
Val
V
编辑本段性质
一般性质缬氨酸
无色晶体,熔点极高,一般在200℃以上。
不同的氨基酸其味不同,有的无味,有的味甜,有的味苦,谷氨酸的单钠盐有鲜味,是味精的主要成分。
各种氨基酸在水中的溶解度差别很大,并能溶解于稀酸或稀碱中,但不能溶于有机溶剂。
通常酒精能把氨基酸从其溶液中沉淀析出。
紫外吸收性质
氨基酸的一个重要光学性质是对光有吸收作用。
20种Pr——AA在可见光区域均无光吸收,在远紫外区(<220nm)均有光吸收,在紫外区(近紫外区)(220nm—300nm)只有三种AA有光吸收能力,这三种氨基酸是苯丙氨酸、酪氨酸、色氨酸,因为它们的R基含有苯环共轭双键系统。
苯丙AA最大光吸收在259nm、酪AA在278nm、色AA在279nm,蛋白质一般都含有这三种AA残基,所以其最大光吸收在大约280nm波长处,因此能利用分光光度法很方便的测定蛋白质的含量。
分光光度法测定蛋白质含量的依据是朗伯—比尔定律。
在280nm处蛋白质溶液吸光值与其浓度成正比。
氨基酸
酸碱性质
1、两性解离与等电点
氨基酸在水溶液或结晶内基本上均以兼性离子或偶极离子的形式存在。
所谓两性离子是指在同一个氨基酸分子上带有能释放出质子的NH3正缬氨酸离子和能接受质子的COO-负离子,因此氨基酸是两性电解质。
氨基酸的等电点:
氨基酸的带电状况取决于所处环境的PH值,改变PH值可以使氨基酸带正电荷或负电荷,也可使它处于正负电荷数相等,即净电荷为零的两性离子状态。
使氨基酸所带正负电荷数相等即净电荷为零时的溶液PH值称为该AA
2、解离常数
解离式中K1和K2′分别代表α-碳原子上-COOH和-NH3的表现解离常数。
在生化上,解离常数是在特定条件下(一定溶液浓度和离子强度)测定的。
等电点的计算可由其分子上解离基团的表观解离常数来确定。
氨基酸解离常数列表:
缩写中文译名支链分子量 等电点 羧基解离常数氨基解离常数Pkr(R)R基
GlyG甘氨酸亲水性75.076.062.359.78-H
AlaA丙氨酸疏水性89.096.112.359.87-CH3
ValV缬氨酸疏水性117.156.002.399.74-CH-(CH3)2
LeuL亮氨酸疏水性131.176.012.339.74-CH2-CH(CH3)2
IleI异亮氨酸疏水性131.176.052.329.76-CH(CH3)-CH2-CH3
PheF苯丙氨酸疏水性165.195.492.209.31-CH2-C6H5
TrpW色氨酸疏水性204.235.892.469.41-C8NH6
TyrY酪氨酸疏水性181.195.642.209.2110.46-CH2-C6H4-OH
AspD天冬氨酸酸性133.102.851.999.903.90-CH2-COOH
AsnN天冬酰胺亲水性132.125.412.148.72-CH2-CONH2
GluE谷氨酸酸性147.133.152.109.474.07-(CH2)2-COOH
LysK赖氨酸碱性146.199.602.169.0610.54-(CH2)4-NH2
GlnQ谷氨酰胺亲水性146.155.652.179.13-(CH2)2-CONH2
MetM甲硫氨酸疏水性149.215.742.139.28-(CH2)-S-CH3
SerS丝氨酸亲水性105.095.682.199.21-CH2-OH
ThrT苏氨酸亲水性119.125.602.099.10-CH(CH3)-OH
CysC半胱氨酸亲水性121.165.051.9210.708.37-CH2-SH
ProP脯氨酸疏水性115.136.301.9510.64-C3H6
HisH组氨酸碱性155.167.601.809.336.04
ArgR精氨酸碱性174.2010.761.828.9912.48
3、多氨基(碱性氨基酸)和多羧基(酸性氨基酸)氨基酸的解离
解离原则:
先解离α-COOH,随后其他-COOH;然后解离α-NH3+,随后其他-NH3。
总之羧基解离度大于氨基,α-C上基团大于非α-C上同一基团的解离度。
等电点的计算:
首先写出解离方程,两性离子左右两端的表观解离常数的对数的算术平均值。
一般PI值等于两个相近PK值之和的一半。
如天冬氨酸赖氨酸。
4、氨基酸的酸碱滴定曲线
以甘氨酸为例:
摩尔甘氨酸溶于水时,溶液PH为5.97,分别用标准NaOH和HCL滴定,以溶液PH值为纵坐标,加入HCL和NaOH的摩尔数为横坐标作图,得到滴定曲线。
该曲线一个十分重要的特点就是在PH=2.34和PH=9.60处有两个拐点,分别为其PK1和PK2。
规律:
pH[R±]>[R];pH>pK2′时,[R]>[R±]>[R+];pH=pI时,净电荷为零,[R]=[R-];pHpI时,净电荷为“-”。
编辑本段基本反应及检测
1、茚三酮反应(ninhydrinreaction)
试剂颜色备注
茚三酮(弱酸环境加热)紫色(脯氨酸、羟脯氨酸为黄色)(检验α-氨基)
2、坂口反应 (Sakaguchireaction)
丙氨酸
α-萘酚+碱性次溴酸钠红色
(检验胍基精氨酸有此反应)
3、米隆反应(又称米伦氏反应)
HgNO3+HNO3+热红色(检验酚基酪氨酸有此反应,未加热则为白色)
4、Folin-Ciocalteau反应(酚试剂反应)
磷钨酸-磷钳酸蓝色(检验酚基酪氨酸有此反应)
5、黄蛋白反应
浓硝酸煮沸黄色(检验苯环酪氨酸、苯丙氨酸、色氨酸有此反应)
6、Hopkin-Cole反应(乙醛酸反应)
加入乙醛酸混合后徐徐加入浓硫酸 乙醛与浓硫酸接触面处产生紫红色环(检验吲哚基 色氨酸有此反应)
7、Ehrlich反应
P-二甲氨基苯甲醛+浓盐酸蓝色(检验吲哚基色氨酸有此反应)
8、硝普盐试验
Na2(NO)Fe(CN)2*2H2O+稀氨水 红色(检验巯基半胱氨酸有此反应)
9、Sulliwan反应
1,2萘醌、4磺酸钠+Na2SO3红色(检验巯基半胱氨酸有此反应)
氨基酸
10、Folin反应
1,2萘醌、4磺酸钠在碱性溶液深红色(检验α-氨基酸)
肽键(peptidebond):
一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一分子水形成的酰胺键。
肽(peptide):
两个或两个以上氨基通过肽键共价连接形成的聚合物。
是氨基酸通过肽键相连的化合物,蛋白质不完全水解的产物也是肽。
肽按其组成的氨基酸数目为2个、3个和
缬氨酸
4个等不同而分别称为二肽、三肽和四肽等,一般含10个以下氨基酸组成的称寡肽(oligopeptide),由10个以上氨基酸组成的称多肽(polypeptide),它们都简称为肽。
肽链中的氨基酸已不是游离的氨基酸分子,因为其氨基和羧基在生成肽键中都被结合掉了,因此多肽和蛋白质分子中的氨基酸均称为氨基酸残基(aminoacidresidue)。
多肽有开链肽和环状肽。
在人体内主要是开链肽。
开链肽具有一个游离的氨基末端和一个游离的羧基末端,分别保留有游离的α-氨基和α-羧基,故又称为多肽链的N端(氨基端)和C端(羧基端),书写时一般将N端写在分子的左边,并用(H)表示,并以此开始对多肽分子中的氨基酸残基依次编号,而将肽链的C端写在分子的右边,并用(OH)来表示。
目前已有约20万种多肽和蛋白质分子中的肽段的氨基酸组成和排列顺序被测定了出来,其中不少是与医学关系密切的多肽,分别具有重要的生理功能或药理作用。
多肽在体内具有广泛的分布与重要的生理功能。
其中谷胱甘肽在红细胞中含量丰富,具有保护细胞膜结构及使细胞内酶蛋白处于还原、活性状态的功能。
而在各种多肽中,谷胱甘肽的结构比较特殊,分子中谷氨酸是以其γ-羧基与半胱氨酸的α-氨基脱水缩合生成肽键的,且它在细胞中可进行可逆的氧化还原反应,因此有还原型与氧化型两种谷胱甘肽。
近年来一些具有强大生物活性的多肽分子不断地被发现与鉴定,它们大
亮氨酸
多具有重要的生理功能或药理作用,又如一些“脑肽”与机体的学习记忆、睡眠、食欲和行为都有密切关系,这增加了人们对多肽重要性的认识,多肽也已成为生物化学中引人瞩目的研究领域之一。
多肽和蛋白质的区别,一方面是多肽中氨基酸残基数较蛋白质少,一般少于50个,而蛋白质大多由100个以上氨基酸残基组成,但它们之间在数量上也没有严格的分界线,除分子量外,现在还认为多肽一般没有严密并相对稳定的空间结构,即其空间结构比较易变具有可塑性,而蛋白质分子则具有相对严密、比较稳定的空间结构,这也是蛋白质发挥生理功能的基础,因此一般将胰岛素划归为蛋白质。
但有些书上也还不严格地称胰岛素为多肽,因其分子量较小。
但多肽和蛋白质都是氨基酸的多聚缩合物,而多肽也是蛋白质不完全水解的产物。
异亮氨酸
8、环酮、其制备以及其在合成
目前认为,氨基酸以及各种氨基酸组成的二肽和三肽的吸收与单糖相似,是主动转运,且都是同Na+转运耦联的。
当肽进入肠粘膜上皮细胞后,立即被存在于细胞内的肽酶水解为氨基酸。
因此,吸收入静脉血中的几乎全部是氨基酸。
编辑本段氨基酸与其它营养素的作用
蛋白质在机体内的消化和吸收
作为机体内第一营养要素的蛋白质,它在食物营养中的作用是显而易见的,但它在人体内并不能直接被利用,而是通过变成氨基酸小分子后被利用的。
即它在人体的胃肠道内并不直接被人体所吸收,而是在胃肠道中经过多种消化酶的作用,将高分子蛋白质分解为低分子的多肽或氨基酸后,在小肠内被吸收,沿着肝门静脉进入肝脏。
一部分氨基酸在肝脏内进行分解或合成蛋白质;另一部分氨基酸继续随血液分布到各个组织器官,任其选用,合成各种特异性的组织蛋白质。
在正常情况下,氨基酸进入血液中与其输出速度几乎相等,所以正常人血液中氨基酸含量相当恒定。
如以氨基氮计,每百毫升血浆中含量为4~6毫克,每百毫升血球中含量为6.5~9.6毫克。
饱餐蛋白质后,大量氨基酸被吸收,血中氨基酸水平暂时升高,经过6~7小时后,含量又恢复正常。
说明体内氨基酸代谢处于动态平衡,以血液氨基酸为其平衡枢纽,肝脏是血液氨基酸的重要调节器。
因此,食物蛋白质经消化分解为氨基酸后被人体所吸收,抗体利用这些氨基酸再合成自身的蛋白质。
人体对蛋白质的需要实际上是对氨基酸的需要。
起氮平衡作用
当每日膳食中蛋白质的质和量适宜时,摄入的氮量由粪、尿和皮肤排出的氮量相等,称之为氮的总平衡。
实际上是蛋白质和氨基酸之间不断合成与分解之间的平衡。
正常人每日食进的蛋白质应保持在一定范围内,突然增减食入量时,机体尚能调节蛋白质的代谢量维持氮平衡。
食入过量蛋白质,超出机体调节能力,平衡机制就会被破坏。
完全不吃蛋白质,体内组织蛋白依然分解,持续出现负氮平衡,如不及时采取措施纠正,终将导致抗体死亡。
氨基酸
转变为糖或脂肪
氨基酸分解代谢所产生的a-酮酸,随着不同特性,循糖或脂的代谢途径进行代谢。
a-酮酸可再合成新的氨基酸,或转变为糖或脂肪,或进入三羧循环氧化分解成CO2和H2O,并放出能量。
产生一碳单位
某些氨基酸分解代谢过程中产生含有一个碳原子的基团,包括甲基、亚甲基、甲烯基、甲快基、甲酚基及亚氨甲基等。
一碳单位具有一下两个特点:
1.不能在生物体内以游离形式存在;2.必须以四氢叶酸为载体。
能生成一碳单位的氨基酸有:
丝氨酸、色氨酸、组氨酸、甘氨酸。
另外蛋氨酸(甲硫氨酸)可通过S-腺苷甲硫氨酸(SAM)提供“活性甲基”(一碳单位),因此蛋氨酸也可生成一碳单位。
一碳单位的主要生理功能是作为嘌呤和嘧啶的合成原料,是氨基酸和核苷酸联系的纽带。
参与构成酶、激素、部分维生素
酶的化学本质是蛋白质(氨基酸分子构成),如淀粉酶、胃蛋白酶、胆碱脂酶、碳酸酐酶、转氨酶等。
含氮激素的成分是蛋白质或其衍生物,如生长激素、促甲状腺激素、肾上腺素、胰岛素、促肠液激素等。
有的维生素是由氨基酸转变或与蛋白质结合存在。
酶、激素、维生素在调节生理机能、催化代谢过程中起着十分重要的作用。
人体必需氨基酸的需要量
成人必需氨基酸的需要量约为蛋白质需要量的20%~37%。
编辑本段在医疗中的应用
氨基酸在医药上主要用来制备复方氨基酸输液,也用作治疗药物和用于合成多肽药物。
目前用作药物的氨基酸有一百几十种,其中包括构成蛋白质的氨基酸有20种和构成非蛋白质的氨基酸有100多种。
由多种氨基酸组成的复方制剂在现代静脉营养输液以及“要素饮食”疗法中占有非常重要的地位,对维持危重病人的营养,抢救患者生命起积极作用,成为现代医疗中不可少的医药品种之一。
谷氨酸、精氨酸、天门冬氨酸、胱氨酸、L-多巴等氨基酸单独作用治疗一些疾病,主要用于治疗肝病疾病、消化道疾病、脑病、心血管病、呼吸道疾病以及用于提高肌肉活力、儿科营养和解毒等。
此外氨基酸衍生物在癌症治疗上出现了希望。
编辑本段对人体生命活动的作用
氨基酸是构成生物体蛋白质并同生命活动有关的最基本的物质,是在生物体内构成蛋白质分子的基本单位,与生物的生命活动有着密切的关系。
它在抗体内具有特殊的生理功能,是生物体内不可缺少的营养成分之一。
人体构成基本物质之一
作为构成蛋白质分子的基本单位的氨基酸,无疑是构成人体内最基本物质之一。
甲硫氨酸
生命代谢的物质基础
生命的产生、存在和消亡,无一不与蛋白质有关,正如恩格斯所说:
“蛋白质是生命的物质基础,生命是蛋白质存在的一种形式。
”如果人体内缺少蛋白质,轻者体质下降,发育迟缓,抵抗力减弱,贫血乏力,重者形成水肿,甚至危及生命。
一旦失去了蛋白质,生命也就不复存在
脯氨酸
,故有人称蛋白质为“生命的载体”。
可以说,它是生命的第一要素。
蛋白质的基本单位是氨基酸。
如果人体缺乏任何一种必需氨基酸,就可导致生理功能异常,影响机体代谢的正常进行,最后导致疾病。
同样,如果人体内缺乏某些非必需氨基酸,会产生机体代谢障碍。
精氨酸和瓜氨酸对形成尿素十分重要;胱氨酸摄入不足就会引起胰岛素减少,血糖升高。
又如创伤后胱氨酸和精氨酸的需要量大增,如缺乏,即使热能充足仍不能顺利合成蛋白质。
总之,氨基酸在人体内通过代谢可以发挥下列一些作用:
①合成组织蛋白质;②变成酸、激素、抗体、肌酸等含氨物质;③转变为碳水化合物和脂肪;④氧化成二氧化碳和水及尿素,产生能量。
因此,氨基酸在人体中的存在,不仅提供了合成蛋白质的重要原料,而且对于促进生长,进行正常代谢、维持生命提供了物质基础。
如果人体缺乏或减少其中某一种,人体的正常生命代谢就会受到障碍,甚至导致各种疾病的发生或生命活动终止。
由此可见,氨基酸在人体生命活动中显得多么需要。
含有氨基酸的食物
氨基酸含量比较丰富的食物有鱼类,像墨鱼、章鱼、鳝鱼、泥鳅、海参、墨鱼、蚕蛹、鸡肉、冻豆腐、紫菜、等。
另外,像豆类,豆类食品,花生、杏仁或香蕉含的氨基酸就比较多
牛肉、鸡蛋、黄豆、银耳和新鲜果蔬
动物内脏、瘦肉、鱼类、乳类、山药、藕等
含有氨基酸的食物
*玉米中严重缺乏赖氨酸
编辑本段代谢途径
氨基酸参与代谢的具体途径有以下几条:
脱氨基作用
主要在肝脏中进行:
包括如下几种过程:
(一)氧化脱氨基:
第一步,脱氢,生成亚胺;第二步,水解。
生成的H2O2有毒,在过氧化氢酶催化下,生成H2OO2,解除对细胞的毒害。
(二)非氧化脱氨基作用:
①还原脱氨基(严格无氧条件下);②水解脱氨基;③脱水脱氨基;④脱巯基脱氨基;⑤氧化-还原脱氨基,两个氨基酸互相发生氧化还原反应,生成有机酸、酮酸、氨;⑥脱酰胺基作用。
(三)转氨基作用。
转氨作用是氨基酸脱氨的重要方式,除Gly、Lys、Thr、Pro外,大部分氨基酸都能参与转氨基作用。
α-氨基酸和α-酮酸之间发生氨基转移作用,结果是原来的氨基酸生成相应的酮酸,而原来的酮酸生成相应的氨基酸。
(四)联合脱氨基:
单靠转氨基作用不能最终脱掉氨基,单靠氧化脱氨基作用也不能满足机体脱氨基的需要。
机体借助联合脱氨基作用可以迅速脱去氨基:
1、以谷氨酸脱氢酶为中心的联合脱氨基作用。
氨基酸的α-氨基先转到α-酮戊二酸上,生成相应的α-酮酸和Glu,然后在L-Glu脱氨酶催化下,脱氨基生成α-酮戊二酸,并释放出氨。
2、通过嘌呤核苷酸循环的联合脱氨基做用。
骨骼肌、心肌、肝脏、脑都是以嘌呤核苷酸循环的方式为主。
脱羧作用
生物体内大部分氨基酸可进行脱羧作用,生成相应的一级胺。
氨基酸脱羧酶专一性很强,每一种氨基酸都有一种脱羧酶,辅酶都是磷酸吡哆醛。
氨基酸脱羧反应广泛存在于动、植物和微生物中,有些产物具有重要生理功能,如脑组织中L-Glu脱羧生成r-氨基丁酸,是重要的神经递质。
His脱羧生成组胺(又称组织胺),有降低血压的作用。
Tyr脱羧生成酪胺,有升高血压的作用。
但大多数胺类对动物有毒,体内有胺氧化酶,能将胺氧化为醛和氨。
因此,氨基酸在人体中的存在,不仅提供了合成蛋白质的重要原料,而且对于促进生长,进行正常代谢、维持生命提供了物质基础。
如果人体缺乏或减少其中某一种,人体的正常生命代谢就会受到障碍,甚至导致各种疾病的发生或生命活动终止。
编辑本段对应的密码子表
密码子(codonm),RNA分子中每相邻的三个核苷酸编成一组,在蛋白质合成时,代表某一种氨基酸。
科学家已经发现,信使RNA在细胞中能决定蛋白质分子中的氨基酸种类和排列次序。
也就是说,信使RNA分子中的四种核苷酸(碱基)的序列能决定蛋白质分子中的20种氨基酸的序列。
碱基数目与氨基酸种类、数目的对应关系是怎样的呢?
为了确定这种关系,研究人员在试管中加入一个有120个碱基的信使RNA分子和合成蛋白质所需的一切物质,结果产生出一个含40个氨基酸的多肽分子。
可见,信使RNA分子上的三个碱基能决定一个氨基酸。
密码子表:
第二个字母
第一个字母
U
C
A
G
第三个字母
U
苯丙氨酸
丝氨酸
酪氨酸
半胱氨酸
U
U
苯丙氨酸
丝氨酸
酪氨酸
半胱氨酸
C
U
亮氨酸
丝氨酸
终止
终止
A
U
亮氨酸
丝氨酸
终止
色氨酸
G
C
亮氨酸
脯氨酸
组氨酸
精氨酸
U
C
亮氨酸
脯氨酸
组氨酸
精氨酸
C
C
亮氨酸
脯氨酸
谷氨酰胺
精氨酸
A
C
亮氨酸
脯氨酸
谷氨酰胺
精氨酸
G
A
异亮氨酸
苏氨酸
天冬酰胺
丝氨酸
U
A
异亮氨酸
苏氨酸
天冬酰胺
丝氨酸
C
A
异亮氨酸
苏氨酸
赖氨酸
精氨酸
A
A
甲硫氨酸
苏氨酸
赖氨酸
精氨酸
G
A
(起始)
G
缬氨酸
丙氨酸
天冬氨酸
甘氨酸
U
G
缬氨酸
丙氨酸
天冬氨酸
甘氨酸
C
G
缬氨酸
丙氨酸
谷氨酸
甘氨酸
A
G
缬氨酸
丙氨酸
谷氨酸
甘氨酸
G
G
(起始)
希望以上资料对你有所帮助,附励志名言3条:
1、常自认为是福薄的人,任何不好的事情发生都合情合理,有这样平常心态,将会战胜很多困难。
2、君子之交淡如水,要有好脾气和仁义广结好缘,多结识良友,那是积蓄无形资产。
很多成功就是来源于无形资产。
3、一棵大树经过一场雨之后倒了下来,原来是根基短浅。
我们做任何事都要打好基