机械毕业设计英文外文翻译应力为基础的有限元方法应用于灵活的曲柄滑块机构.docx

上传人:b****4 文档编号:27532957 上传时间:2023-07-02 格式:DOCX 页数:24 大小:321.93KB
下载 相关 举报
机械毕业设计英文外文翻译应力为基础的有限元方法应用于灵活的曲柄滑块机构.docx_第1页
第1页 / 共24页
机械毕业设计英文外文翻译应力为基础的有限元方法应用于灵活的曲柄滑块机构.docx_第2页
第2页 / 共24页
机械毕业设计英文外文翻译应力为基础的有限元方法应用于灵活的曲柄滑块机构.docx_第3页
第3页 / 共24页
机械毕业设计英文外文翻译应力为基础的有限元方法应用于灵活的曲柄滑块机构.docx_第4页
第4页 / 共24页
机械毕业设计英文外文翻译应力为基础的有限元方法应用于灵活的曲柄滑块机构.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

机械毕业设计英文外文翻译应力为基础的有限元方法应用于灵活的曲柄滑块机构.docx

《机械毕业设计英文外文翻译应力为基础的有限元方法应用于灵活的曲柄滑块机构.docx》由会员分享,可在线阅读,更多相关《机械毕业设计英文外文翻译应力为基础的有限元方法应用于灵活的曲柄滑块机构.docx(24页珍藏版)》请在冰豆网上搜索。

机械毕业设计英文外文翻译应力为基础的有限元方法应用于灵活的曲柄滑块机构.docx

机械毕业设计英文外文翻译应力为基础的有限元方法应用于灵活的曲柄滑块机构

英文原稿

ApplicationofStress-basedFiniteElementMethodtoaFlexibleSliderCrankMechanism

(Y.L.KuoUniversityofTorontoW.L.CleghornUniversityofCanada)

Abstract—Thispaperpresentsanewproceduretoapplythestress-basedfiniteelementmethodonEuler-Bernoullibeams.Anapproximatedbendingstressdistributionisselected,andthentheapproximatedtransversedisplacementisdeterminedbyintegration.Theproposedapproachisappliedtosolveaflexibleslidercrankmechanism.TheformulationisbasedontheEuler-Lagrangeequation,forwhichtheLagrangianincludesthecomponentsrelatedtothekineticenergy,thestrainenergy,andtheworkdonebyaxialloadsinalinkthatundergoeselastictransversedeflection.Abeamelementismodeledbasedonatranslatingandrotatingmotion.Theresultsdemonstratetheerrorcomparisonobtainedfromthestress-anddisplacement-basedfiniteelementmethods.

Keywords:

stress-basedfiniteelementmethod;slider

crankmechanism;Euler-Lagrangeequation.

1.Introduction

Thedisplacement-basedfiniteelementmethodemployscomplementaryenergybyimposingassumeddisplacements.Thismethodmayyieldthediscontinuitiesofstressfieldsontheinter-elementboundarywhileemployinglow-orderelements,andtheboundaryconditionsassociatedwithstresscouldnotbesatisfied.Hence,analternativeapproachwasdevelopedandcalledthestress-basedfiniteelementmethod,whichutilizesassumedstressfunctions.VeubekeandZienkiewicz[1,2]werethefirstresearchersintroducingthestress-basedfiniteelementmethod.Afterthat,themethodwasappliedtoawiderangeofproblemsanditsapplications[3-5]Inaddition,therearevariousbooksprovidingdetailsaboutthemethod[6,7].

Theoperationofhigh-speedmechanismsintroducesvibration,acousticradiation,wearingofjoints,andinaccuratepositioningduetodeflectionsofelasticlinks.Thus,itisnecessarytoperformananalysisofflexibleelasto-dynamicsofthisclassofproblemsratherthantheanalysisofrigidbodydynamics.Flexiblemechanismsarecontinuousdynamicsystemswithaninfinitenumberofdegreesoffreedom,andtheirgoverningequationsofmotionaremodeledbynonlinearpartialdifferentialequations,buttheiranalyticalsolutionsareimpossibletoobtain.Cleghornetal.[8-10]includedtheeffectofaxialloadsontransversevibrationsofaflexiblefour-barmechanism.Also,theyconstructedatranslatingandrotatingbeamelementwithaquinticpolynomial,whichcaneffectivelypredictthetransversevibrationandthebendingstress.

Thispaperpresentsanewapproachfortheimplementationofthestress-basedfiniteelementmethodontheEuler-Bernoullibeams.Thedevelopedapproachfirstselectsanassumedstressfunction.Then,theapproximatedtransversedisplacementfunctionisobtainedbyintegratingtheassumedstressfunction.Thus,thisapproachcansatisfythestressboundaryconditionswithoutimposingaconstraint.Weapplythisapproachtosolveaflexibleslidercrankmechanism.Inordertoshowtheaccuracyenhancementbythisapproach,themechanismisalsosolvedbythedisplace-basedfiniteelementmethod.Theresultsdemonstratetheerrorcomparison.

II.Stress-basedMethodforEuler-BernoulliBeams

ThebendingstressofEuler-Bernoullibeamsisassociatedwiththesecondderivativeofthetransversedisplacement,namelycurvature,whichcanbeapproximatedastheproductofshapefunctionsandnodalvariables:

Where

isarowvectorofshapefunctionsfortheithelement;

isacolumnvectorofnodalcurvatures,yisthelateralpositionwithrespecttotheneutrallineofthebeam,EistheYoung’smodulus,and

isthetransversedisplacement,whichisafunctionofaxialpositionx.

IntegratingEq.

(1)leadstotheexpressionsoftherotationandthetransversedisplacementasRotation:

Transversedisplacement:

Where

and

aretwointegrationconstantsfortheithelement,whichcanbedeterminedbysatisfyingthecompatibility.

SubstitutingEqs.

(2)and(3)into

(1),thefiniteelementdisplacement,rotationandcurvaturecanbe

expressedas:

wherethesubscripts(C),(R)and(D)refertocurvature,rotationanddisplacement,respectively.Byapplyingthevariationalprinciple,theelementandglobalequationscanbeobtained[11-13].

Table1:

Comparisonofthedisplacement-andthestress-basedfiniteelementmethodsforan

Euler-Bernoullibeamelement

III.ComparisonsoftheDisplacement-andStress-basedFiniteElementMethods

Themajordisadvantageofthedisplacement-basedfiniteelementmethodisthatthestressfieldsattheinter-elementnodesarediscontinuouswhileemployinglow-degreeshapefunctions.Thisdiscontinuityyieldsoneofthemajorconcernsbehindthediscretizationerrors.Inaddition,itmightuseexcessivenodalvariableswhileformulatingstiffnessmatrices.

Thestress-basedmethodhasseveraladvantagesoverthedisplacement-basedfinitemethod.Firstofall,thestress-basedmethodproducesfewernodalvariables(Table1).Secondly,whenemployingthestress-basedfinitemethod,theboundaryconditionsofbendingstresscanbesatisfied,andthestressiscontinuousattheinter-elementnodes.Finally,thestressiscalculateddirectlyfromthesolutionoftheglobalsystemequations.However,theonlydisadvantageofthestress-basedfinitemethodisthattheintegrationconstantsaredifferentforeachelement.

IV.GenerationofGoverningEquation

TheslidercrankmechanismshowninFig.1isoperatedwithaprescribedrigidbodymotionofthecrank,andthegoverningequationsarederivedusingafiniteelementformulation.Thederivationprocedureofthefiniteelementequationsinvolves:

(1)derivingthekinematicsofarigidbodyslidercrankmechanism;

(2)constructingatranslatingandrotatingbeamelementbasedontherigidbodymotionofthemechanism;(3)definingasetofglobalvariablestodescribethemotionofaflexibleslidercrankmechanism;(4)assemblingallbeamelements.Finally,theglobalfiniteelementequationscanbeobtained,andthetimeresponseofaflexibleslidercrankmechanismcanbeobtainedbytimeintegration.

A.Elementequationofatranslatingandrotatingbeam

Consideraflexiblebeamelementsubjectedtoprescribedrigidbodytranslationsandrotations.Superimposedontherigidbodytrajectory,afinitenumberofdeflectionvariablesinthelongitudinalandtransversedirectionsisallowed.TheEuler-Lagrangeequationisusedtoderivethegoverningdifferentialequationsforanarbitrarilytranslatingandrotatingflexiblemember.Sinceelasticdeflectionsareconsideredsmall,andthereisafinitenumberofdegreesoffreedom,thegoverningequationsarelinearandareconvenientlywritteninmatrixform.Thederivationoftheelementequationshasbeenpreciselypresentedin[8-10],andthissectionprovidesabriefsummary.

Inviewofhighaxialstiffnessofabeam,itisreasonabletoconsiderthebeamasbeingrigidinitslongitudinaldirection.Hence,thelongitudinaldeflectionisgivenas

whereu1isanodalvariable,whichisconstantwithrespecttothexdirectionshowninFig.2.Thetransversedeflectioncanberepresentedas

Thevelocityofanarbitrarypointonthebeamelementwithatranslatingandrotatingmotionisgivenas

where

istheabsolutevelocityofpointOofthebeamelementshowninFig.2;θ?

istheangularvelocityofthebeamelement;

arethelongitudinalandtransversedisplacementsofanarbitrarypointonthebeamelement,respectively;xisalongitudinalpositiononthebeamelementshowninFig.

2.

Ifweletρbethemassperunitvolumeofelementmaterial;A,theelementcross-sectionalarea,andLtheelementlength,thenthekineticenergyofanelementisexpressedas

TheflexuralstrainenergyofuniformaxiallyrigidelementwiththeYoung’smodulus,E,andsecondmomentofarea,I,isgivenas

Theworkdonebyatensilelongitudinalload,(i)P,inanelementthatundergoesanelastictransversedeflectionisgivenby[14]

Longitudinalloadsinamovingmechanismelementarenotconstant,anddependbothonthepositionintheelementandontime.Withthelongitudinalelasticmotionsneglected,thelongitudinalloadsmaybederivedfromtherigidbodyinertiaforces,andcanbeexpressedas

wherePRisanexternallongitudinalloadactingattherighthandendofanelement,andox

(i)aistheabsoluteeaccelerationofthepointOinthexdirectionshowninFig.2.

TheLagrangiantakestheform

SubstitutingEqs.(5-10)into(12),andemployingtheEuler-Lagrangeequations,thegoverningequationsofmotionforarotatingandtranslatingelasticbeamcanbeexpressedinthefollowingmatrixform:

where[Me],[Ce]and[Ke]aremass,equivalentdamping,andequivalentstiffnessmatricesofaelement,respectively;{Fe}isaloadvectorofanelement.Whenformulatingthemassmatrixofthecoupler,themassoftheslidershouldbetakenintoaccount.

 

B.Globalequationsofslidercrankmechanism

Fortheproposedapproachtosolveaflexibleslidercrankmechanism,theglobalvariablesarethecurvaturesonthenodes.Forassemblingallelements,itisnecessarytoconsidertheboundaryconditionsappliedtothemechanism.Sinceaprescribedmotionappliedtothebaseofthecrank,thereisabendingmomentatpointOshowninFig.1,i.e.,thecurvatureatpointOexists.ForpointsAandBshowninFig.1,wepresumethatbothpointsrefertopinjoints.Thus,thebendingmomentsandthecurvaturesatbothpointsarezeros.

SinceEq.(13)isamatrix-formexpressionintermsofthevectorofglobalvariables{φ},theglobalequationscanbeobtainedbydirectlysummingupallofelementequations,whichcanbeexpressedas

where[M],[C],[K]areglobalmass,dampingandstiffnessmatrices,respectively;{F}isagloballoadvector.

V.Numericalsimulationbasedonsteadystate

Therotatingspeed

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1