洛必达法则LHopitals rule.docx

上传人:b****3 文档编号:27452791 上传时间:2023-07-01 格式:DOCX 页数:25 大小:20.87KB
下载 相关 举报
洛必达法则LHopitals rule.docx_第1页
第1页 / 共25页
洛必达法则LHopitals rule.docx_第2页
第2页 / 共25页
洛必达法则LHopitals rule.docx_第3页
第3页 / 共25页
洛必达法则LHopitals rule.docx_第4页
第4页 / 共25页
洛必达法则LHopitals rule.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

洛必达法则LHopitals rule.docx

《洛必达法则LHopitals rule.docx》由会员分享,可在线阅读,更多相关《洛必达法则LHopitals rule.docx(25页珍藏版)》请在冰豆网上搜索。

洛必达法则LHopitals rule.docx

洛必达法则LHopitalsrule

洛必达法则(L'Hopital'srule)

ThesecondsectionL'HospitalRule

XM.Am

1.(6)LIM(a=0);

X.>axn.An

.

Solution:

LimXMN

.amn=LimMX

NM

.

.

Eleven

=mamn(a=0)

X.>ax.Ax.>anxn

Lntan7x

(7)Lim

X.>0+lntan2x

1.Sec27x.72

Solution:

Lim,lntan7,x=Lim,Tan7,x=Lim,Tan,2,x,SEC,7x,

X.>0+,LN,tan2,xx.>0+,1,.Sec,2,2x,.2,x.>0+,Tan,7,x,SEC,2,2x,

Tan2,X

2sec27x7

=Lim,X.2,.=1

X.>0+7sec2x2

X

One

Ln(1+)

(9)Limx

X.>+,arccot,2,X

Eleven

11(.

X2)1

Solution:

Lim

Ln(1+

X)

=Lim

1+

.

X

Two

=Lim,1+,x2

=Limx2

+

+

Eleven

=1

X.>+,arctan,2,xx.>+,1,x.>+,,x,x.>+,X2,1

1+XX

Twenty-one

(14)LIM(2.);

X.>1,x,.1,x,.1

11

Solution:

LIM(22.1)=Lim2

X1=Lim

.1.

X.>1,x,.1,x,.1,x.>1,x,.1,x.>12x,

One

(16)LIM()Tanx

X.>0+x

.

1lim+tanx..Ln1xlim+1x

(1)

1tanxx.>+0

Solution:

LIM()=e

LimTan

Ee00200lnxxxxxxxx.>.>

+.>

.

===elimx

E==1

X.>0+x

Twenty-one

Xsin

Thereare3.verificationlimitLimx,butnotwithl'Hopital'srulethat.

X.>0SiNx

X21'11

(SIN)2xsin.Cos

Card:

Lim=LimbecauseXXdoesnotexist,itcannotusel'Hopital'sruletosolvethelimit,

X.>0(sin,x)(x)',x.>0,cos,X

Butyoucanusethefollowingmethodstofindthelimit:

One

X2sin1

Lim,x=,LIM(x.Xsin1)=Lim,x,.Lim,xsin,1,=10.=0

X.>0,sin,xx.>0,sin,xxx.>0,sin,xx.>0,X

ThirdsectionTaylorformula

3.seekfunctionf(x)=

X3orderTaylorformulawithLagrangeremainderbypowerexpansionof(X.,4)

357

.

Solution:

F'(x)=1

That'f'(x)=1X2,f'''(x)=3X2,f(4)(x)=.15x2

Two

X4816

F(4)=2,f'(4)=1

F','(4)1.

F''(4)=3

432256

112135.74

ByTaylorformula:

X=2+(X.4).(X.+4)(X.4).2(X.4).

464512384

(Eisbetweenavaluebetween4andx)

4.thenorderTaylorformulawithPenanoremainderforthepowerexpansionofthefunctionf(x)=lnXby(X.,2)

Solution:

becauseFN()=(-1)n

Xn,f()

(2)(-1)n

2n

)!

()x(-1)(-1)=NN=(-1)n(-1)

Therefore:

N

F''

(2)2F()

(2)(X-2)n

N

LN,xf=,F',X(X-2+...+...

(2)+

(2)(-2)+)+o[(-2)]x

2n!

One

13)2(-1)n-11

Nx)NXn

=ln2+(X-2-(X-2+...+)(-2,+o[(-2)]

22N2

5.seekfunctionf(x)=1

3orderTaylorformulawithLagrangeremainderbypowerexpansionof(x+1)

X

Solution:

becauseFN()==(-1)

Nn+1

!

FN.

()xn()(-1)=-n,so...

X

F''(-1)(x+1)2,f'''(-1)(x+1)3

()=(-1)+f'x)

FXf(-1)(+1+++++)

23!

Nnn+

(1))

(f)(-1)(x+1)fn.

N!

+

(n+1)!

(x+1)+1,hasavaluebetween.1andX

N+1

(=)

One

X

=-[1+(+1)+(+1)x2+..Xn(-1)n+1(x)

.

+1

N+2

)avaluebetween

FX+X(+1)]+is.1andX.

10.usetheTaylorformulatofindthelimit

Two

(1)LIM(3,x3+3,X2,.4,x4,.2x3)

X++

Thirty-four

Jie:

maket=

One

Theoriginal=lim+

1+3t.1.2t

XT-0t

Because31+=+X113

Xox+(),41+=+X114

Xox+(),

So313+t==+(),4,.T=.,1,t,ot,

1tot121+()

Two

Thirteen

T(+++)]

Primary=lim

[1T0()][1..

Two

Tot

=lim2

Tot+()

=3

T,0+,t,t,0+,t,

Two

.x

(2)LimcosXe2

.

X=0,x2[x+ln(1,.X)]

24x2242

解:

cosx=x

2.

+X

4.

+,and(4).

2=x

2

+X

8

Ox+4),LN(1x)=XX

2

Ox+2)

1(OX1..(

24244

[Ox(X+X+4.X+X+(4xOX4

)][1])+(OX).

原极限=lim2!

4.

Xxx

2

)]

8=lim

.

12

Ox

=1

X→02x22x→0x4

46[..Ox((++)

22

122

1+1+XX

(3)lim2

2x→0(COSx.ex)x2

解:

1+x2+X+1=.3xOx(4.X)=cosx+EX2OX2)=++x22

1(OX(242)

(1),

24.2

WithoutX2=x2

1234412

所以原极限=lim

1+

2

X+1.

2

X.

4.

X+o(X)

=1

X→0[1.1+(x2)2or1or2+12]X2(x2)

X..X

2

第四节函数的单调性与曲线的凹凸性

3.(4)=ln(1+X+x2)

1+X

2

解:

y=

1+

1

X2

+

+

XX

=

1+

1

X2

∴函数在(>0,,Life.

LIFE+)内单调递增.

Nx

(7)(N>0,x≥0Yxe)

=

3

'..1.XnXn.

解:

=NX.XEandE=1x(.),(N>0,x≥0)

XENX

当x∈(0,n)时,and'>0,当x∈(n+时LIFE),and'<0,

∴函数在[0,n][n+内单调递增,在,内单调递减LIFE).

(3)当0x4.

No

2

Withoutsuchx>X+2

<<时,X

令f解:

x=sin(X)+(0,sox.2x,x∈

No,∴fx)=cosx+2sec

X.2('),

2

F''(X)=x+2.2secxtanx=sinX(32secX.1x∈(0)>0,,

D).

2

因此f'(x在(0)

上单调递增故当x∈(0,2),

2)时,FX>F(0)()

ππ

(')'=0,从而fx

在(0,

No

(2)上单调递增,即)>F(0)=0,sox.2x>亦即sinx+(0,0,x∈

No

2

FX),所以

No

Withoutsuchx>X+2;xx∈(0,).

2

(4)当0X

No

2

So>+13

X3

<<时,XX

解:

记(XX)=x3so(0,1,x∈

D)

FX.

32

'

(1)=SEC2xX2=2=2(suchasXXXX(XX))

FX..+

由'=(XX)=X.1=SEC2as2x>0,X)=知gxso内单调递增,XX

.在GX(0,

().()

So即gx(XX)=g(0)

>=0.

故fx'(>0),(0,x∈

No,从而fx在(0)

(d)内单调增加,因此fx)>F(0),(0,x∈

No

()).

222

即当0X

No

2

Soxx13

3>0,从而tanxx13

(0,3,x∈

No

2

).

时>+<

(5)当x时>4,2>x2.

2ln42Ln2and

解:

取f(TLN)T=2.2ln,∈(4)'(X)=ln2=.>>0,.

TT,FT

T2x24

故当x时>4,F()x单调递增,从而fx>F(4)

()=0,即

.2lnXLN2x>0,亦即2xX2(x>>4).

5.讨论方程lnx=ax(其中a>0)有几个实根?

解:

取函数()=ln+Xa,∈LIFE),FX()=1.,得驻点x=1,

FX.XX',

X

4

当0<<1

时,FX>0,因此函数x在(0,1

'(X)F(内单调增加));

AA

1<<'Life

XF()1

当x+时,F()<0,因此函数x在(LIFE+)内单调减少.

从而f()为最大值又limFX,FX=lim=.∞,.∞,故

1+()()(AA)

Ax→0x→+life

111

..

当f..=ln(1==0,即a时,曲线y=lnxAX与x轴仅有一个交点,这时原方程

..Aae

有惟一实根.

当f1=ln1.即0<<1>0,

时,曲线yLNx=Ax与x轴有两个交点,这时原方

To1.

Toe

..

程有两个实根.

当f1=ln1<0,即a>1.

时,曲线yLNx=Ax与x轴没有交点,这时原方程没有

1.

..Aae

实根.

8.(3)and(4xx1)

=++E

解:

y'=4(X+1)3former,and''(x1)=1220,formerLife.

++>,

Therefore,thecurveisconcavein(++),andthecurveisnot

Thereisaninflectionpoint

(4)y=ln(X2,+1);

'2x'2(x21)2x.2x2(x1)

The'x'.+1).

Solution:

y=

X2+1;y=

(X2,+1)2=

(X2,+1)2

Makey=0,getx1=.1,X2=1.

WhenH-infinityx.1,y'<0',thecurveisin(,

Theinteriorofaninfinity.1]isconvex,

When1X1y'>0',thecurveisconcavein[-1,1];

When,

When1x+,theY'<0,thecurvein[1,++)isconvex,andthecurvehastwoinflectionpoints,respectively

Theinfinity

(1,LN2),(1,LN2)

.

11.askawhyBisworth,thepoint(1,3)istheinflectionpointofthecurvey,=ax3,+bx2

Solution:

y'=3ax2,+2bx,y',=6ax,+2b,

Thea+b=3,6a:

+2b=0,:

a=.

Twenty-three

B=92

12.trytodeterminethecurvesy,=ax3,+bx2,+cx,+dina,B,C,D,sothatthecurveatx=.2hasahorizontaltangent,

Five

(1,.10)istheinflectionpoint,andthepoint(.2,44)isonthecurve

Solution:

y',=3ax2,+2bx,+c,y',=6ax,+2b

Thus12a,.4b,+c,=0,6a,+2b,=0,a,+b,+c,+d,=.10,.8a,+4b,,.2c,+d,=44,

Geta,=1,B,=.3,C,=.24,D,=16

14.y=f(x)hasacontinuousderivativeoforderthreeinaneighborhoodofX=x0,iff'(x0)=0,f'''(x0)=0,test

Askwhether(x0,f(x0))isaninflectionpoint?

Why?

Solution:

'f''(x0)=0maybe'f''(x0)>0,and'f'(x),thedelta>0,whenx(x0.X0,Delta,delta)when

'f'(x)>0,thef''(x)increasedsothatwhenx(x0.Delta,x0)atf'<0'(x),whichisin(x0.6,x0).

Y=f(x)graphisconvex,whenx(x0,x0+8)when'f'(x)>0in(x0,x0+delta)onY=f(x).

Thegraphisconcave,so(x0,f(x0))istheinflectionpoint

Theextremevalueandthemaximumvalueoffifthfunctions

3x2+4x+4

1.(6)y=;

X2x1

++

(++

Solution:

y==(6x,+4)(X2,x)

(x

1)

Two

.

X

(2x

1)

+

21)(3x2,+4x,+4)=

(x

.

Two

Xx

X

+2)

1)2

Makey'=0getstuck

++++

X1,=.2,X2,=0.

Whenx2y'<0,sothefunctionismonotonicallyreducedin(=.2]);when2,x,0,y'>

2.<<.,,0,

Itfunctionsin[2,0.increaseswhen0

Itcanbeseen

(2)8

Forminimumvalues,y(0)=4

Y.

Three

Formaximumvalue

One

(9)y=.32(x,+1)3

Solution:

whenx=.1,y'=.2.1

Thefunctionisundefinedwhen2/3,<0,andX=.1,sothefunctionisknown

3(x,+1)

Thereisnoextremumin((=+++))

Theinteriorismonotonicallyreduced,sothefunctionis(

(10)YXTan

X.

Solution:

thefunctiongivenbyY=+1sec2>0ismonotonicallyincreasedin(+++),sothatthefunctionisinfinitein(++)

Six

Value.

2.testsprovethatifthefunctiony,=ax3,+bx2,+cx,+dsatisfytheconditionB2,.3ac,<0,thenthisfunctionhasnoextremum,

License:

y'=3ax2+c.+2bxB2.3ac<0bya=0,C=0.ytwo'isthreetype,

==

(2)B2.,a,.C,=4(B2.AC)

4(3)3<0.

Whena>0,theimageof'y'isopenedupandabovetheXaxis,soy'>0',sothegivenfunctionisin(+++)

Monotonicallyincreasing,whena<0,theimageof`y'isopeneddownwardandbelowtheXaxis,soy'<0',sothatthegivenfunctionisin

(B23<0issetupandthegivenfunctionismonotonein(++++)

TheinterioroftheboundisreducedmonotonicallysothattheconditionisAC

Functionin,

Thereisnoextremuminthe+++)

3.,askwhyavalue,functionf(),=a,sin,x,+1,sin,3

PI

X

Three

X=x=

Three

Whereistheextremevalue?

Isitamaximumor?

Minimumvalue,andfindtheextremevalue

.

Solution:

F=acosx+cos3'(x),functionextremumatx=f'..=.

Xpi

Three

PI30

.

Acos

PI

Three

+cosPI=0,soa=2.

PiPi

"(=.2sin)x.3sin3,f2Sin.3sin3<0..=.PI,

FXX..

Thirty-three

.

PiPi1

.

Therefore,f..=2sin+sinpi=3ismaximum

..333

5.y=2x3.6x2.18xaskedthefunction.7(x=1~4)getsthemaximumvaluewhere?

Andcalculateitsmaximumvalue.

Solution:

thefunctionisderivableon[1,4],andy'=6x2,.12,x,.18,=6(x,+1)(x,.3)

TheY'=0,x1=.1(left)tothestagnationpoint,X2=3,havefunctiontoobtainthemaximumvalueatx=1,andthemaximumvalueis

Y|x1=.29

=

9.tobuildacylindricaltank,volumeV,theirradiusisequaltothenumberofRandhighsurfaceareatomaketheminimumatbottom

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1