巨磁电阻效应及应用实验报告.docx
《巨磁电阻效应及应用实验报告.docx》由会员分享,可在线阅读,更多相关《巨磁电阻效应及应用实验报告.docx(20页珍藏版)》请在冰豆网上搜索。
巨磁电阻效应及应用实验报告
成绩评定
教师签名
嘉应学院物理系大学物理
学生实验报告
实验项目:
实验地点:
班级:
姓名:
座号:
实验时间:
年月日
物理与光信息科技学院编制
实验预习部分
一、实验目的:
1、了解GMR效应的原理
2、测量GMR模拟传感器的磁电转换特性曲线
3、测量GMR的磁阻特性曲线
4、测量GMR开关(数字)传感器的磁电转换特性曲线
5、用GMR传感器测量电流
6、用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理
7、通过实验了解磁记录与读出的原理
二、实验仪器设备:
巨磁电阻实验仪
图5巨磁阻实验仪操作面板
图5所示为巨磁阻实验仪系统的实验仪前面板图。
区域1——电流表部分:
做为一个独立的电流表使用。
两个档位:
2mA档和200mA档,可通过电流量程切换开关选择合适的电流档位测量电流。
区域2——电压表部分:
做为一个独立的电压表使用。
两个档位:
2V档和200mV档,可通过电压量程切换开关选择合适的电压档位。
区域3——恒流源部分:
可变恒流源。
实验仪还提供GMR传感器工作所需的4V电源和运算放大器工作所需的±8V电源。
基本特性组件
图6基本特性组件
基本特性组件由GMR模拟传感器,螺线管线圈及比较电路,输入输出插孔组成。
用以对GMR的磁电转换特性,磁阻特性进行测量。
GMR传感器置于螺线管的中央。
螺线管用于在实验过程中产生大小可计算的磁场,由理论分析可知,无限长直螺线管内部轴线上任一点的磁感应强度为:
B=μ0nI
(1)
式中n为线圈密度,I为流经线圈的电流强度,
为真空中的磁导率。
采用国际单位制时,由上式计算出的磁感应强度单位为特斯拉(1特斯拉=10000高斯)。
电流测量组件
图7电流测量组件
电流测量组件将导线置于GMR模拟传感器近旁,用GMR传感器测量导线通过不同大小电流时导线周围的磁场变化,就可确定电流大小。
与一般测量电流需将电流表接入电路相比,这种非接触测量不干扰原电路的工作,具有特殊的优点。
角位移测量组件
图8角位移测量组件
角位移测量组件用巨磁阻梯度传感器作传感元件,铁磁性齿轮转动时,齿牙干扰了梯度传感器上偏置磁场的分布,使梯度传感器输出发生变化,每转过一齿,就输出类似正弦波一个周期的波形。
利用该原理可以测量角位移(转速,速度)。
汽车上的转速与速度测量仪就是利用该原理制成的。
磁读写组件
图9磁读写组件
磁读写组件用于演示磁记录与读出的原理。
磁卡做记录介质,磁卡通过写磁头时可写入数据,通过读磁头时将写入的数据读出来。
实验内容与步骤
一、GMR模拟传感器的磁电转换特性测量
在将GMR构成传感器时,为了消除温度变化等环境因素对输出的影响,一般采用桥式结构,图10是某型号传感器的结构。
对于电桥结构,如果4个GMR电阻对磁场的响应完全同步,就不会有信号输出。
图10中,将处在电桥对角位置的两个电阻R3、R4覆盖一层高导磁率的材料如坡莫合金,以屏蔽外磁场对它们的影响,而R1、R2阻值随外磁场改变。
设无外磁场时4个GMR电阻的阻值均为R,R1、R2在外磁场作用下电阻减小ΔR,简单分析表明,输出电压:
UOUT=UINΔR/(2R-ΔR)
(2)
屏蔽层同时设计为磁通聚集器,它的高导磁率将磁力线聚集在R1、R2电阻所在的空间,进一步提高了R1、R2的磁灵敏度。
从图10的几何结构还可见,巨磁电阻被光刻成微米宽度迂回状的电阻条,以增大其电阻至kΩ数量级,使其在较小工作电流下得到合适的电压输出。
图11是某GMR模拟传感器的磁电转换特性曲线。
图12是磁电转换特性的测量原理图。
图12模拟传感器磁电转换特性实验原理图
三、实验原理:
根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。
称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。
电阻定律R=l/S中,把电阻率视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm),可以忽略边界效应。
当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。
电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。
早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。
总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。
在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。
施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。
电流的方向在多数应用中是平行于膜面的。
图3是图2结构的某种GMR材料的磁阻特性。
由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。
当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。
磁阻变化率ΔR/R达百分之十几,加反向磁场时磁阻特性是对称的。
注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。
有两类与自旋相关的散射对巨磁电阻效应有贡献。
其一,界面上的散射。
无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行-反平行,或反平行-平行),电子在界面上的散射几率很大,对应于高电阻状态。
有外磁场时,上下两层铁磁膜的磁场方向一致,电子在界面上的散射几率很小,对应于低电阻状态。
其二,铁磁膜内的散射。
即使电流方向平行于膜面,由于无规散射,电子也有一定的几率在上下两层铁磁膜之间穿行。
无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,在穿行过程中都会经历散射几率小(平行)和散射几率大(反平行)两种过程,两类自旋电流的并联电阻相似两个中等阻值的电阻的并联,对应于高电阻状态。
有外磁场时,上下两层铁磁膜的磁场方向一致,自旋平行的电子散射几率小,自旋反平行的电子散射几率大,两类自旋电流的并联电阻相似一个小电阻与一个大电阻的并联,对应于低电阻状态。
多层膜GMR结构简单,工作可靠,磁阻随外磁场线性变化的范围大,在制作模拟传感器方面得到广泛应用。
在数字记录与读出领域,为进一步提高灵敏度,发展了自旋阀结构的GMR。
如图4所示。
自旋阀结构的SV-GMR(SpinvalveGMR)由钉扎层,被钉扎层,中间导电层和自由层构成。
其中,钉扎层使用反铁磁材料,被钉扎层使用硬铁磁材料,铁磁和反铁磁材料在交换耦合作用下形成一个偏转场,此偏转场将被钉扎层的磁化方向固定,不随外磁场改变。
自由层使用软铁磁材料,它的磁化方向易于随外磁场转动。
这样,很弱的外磁场就会改变自由层与被钉扎层磁场的相对取向,对应于很高的灵敏度。
制造时,使自由层的初始磁化方向与被钉扎层垂直,磁记录材料的磁化方向与被钉扎层的方向相同或相反(对应于0或1),当感应到磁记录材料的磁场时,自由层的磁化方向就向与被钉扎层磁化方向相同(低电阻)或相反(高电阻)的方向偏转,检测出电阻的变化,就可确定记录材料所记录的信息,硬盘所用的GMR磁头就采用这种结构。
实验预习部分
四、实验步骤:
1.将GMR模拟传感器置于螺线管磁场中,功能切换按钮切换为“传感器测量”。
实验仪的4伏电压源接至基本特性组件“巨磁电阻供电”,恒流源接至“螺线管电流输入”,基本特性组件“模拟信号输出”接至实验仪电压表。
按表1数据,调节励磁电流,逐渐减小磁场强度,记录相应的输出电压于表格“减小磁场”列中。
由于恒流源本身不能提供负向电流,当电流减至0后,交换恒流输出接线的极性,使电流反向。
再次增大电流,此时流经螺线管的电流与磁感应强度的方向为负,从上到下记录相应的输出电压。
电流至-100mA后,逐渐减小负向电流,电流到0时同样需要交换恒流输出接线的极性。
从下到上记录数据于“增大磁场”列中。
理论上讲,外磁场为零时,GMR传感器的输出应为零,但由于半导体工艺的限制,4个桥臂电阻值不一定完全相同,导致外磁场为零时输出不一定为零,在有的传感器中可以观察到这一现象。
表1GMR模拟传感器磁电转换特性的测量电桥电压4V
磁感应强度/高斯
输出电压/mV
励磁电流/mA
磁感应强度/高斯
减小磁场
增大磁场
100
90
80
70
60
50
40
30
20
10
5
0
-5
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
根据螺线管上标明的线圈密度,由公式
(1)计算出螺线管内的磁感应强度B。
以磁感应强度B作横座标,电压表的读数为纵座标作出磁电转换特性曲线。
不同外磁场强度时输出电压的变化反映了GMR传感器的磁电转换特性,同一外磁场强度下输出电压的差值反映了材料的磁滞特性。
二、GMR磁阻特性测量
图13磁阻特性测量原理图
为加深对巨磁电阻效应的理解,我们对构成GMR模拟传感器的磁阻进行测量。
将基本特性组件的功能切换按钮切换为“巨磁阻测量”,此时被磁屏蔽的两个电桥电阻R3,R4被短路,而R1,R2并联。
将电流表串连进电路中,测量不同磁场时回路中电流的大小,就可计算磁阻。
测量原理如图13所示。
实验装置:
巨磁阻实验仪,基本特性组件。
将GMR模拟传感器置于螺线管磁场中,功能切换按钮切换为“巨磁阻测量”实验仪的4伏电压源串连电流表后接至基本特性组件“巨磁电阻供电”,恒流源接至“螺线管电流输入”。
按表2数据,调节励磁电流,逐渐减小磁场强度,记录相应的磁阻电流于表格“减小磁场”列中。
由于恒流源本身不能提供负向电流,当电流减至0后,交换恒流输出接线的极性,使电流反向。
再次增大电流,此时流经螺线管的电流与磁感应强度的方向为负,从上到下记录相应的输出电压。
电流至-100mA后,逐渐减小负向电流,电流到0时同样需要交换恒流输出接线的极性。
从下到上记录数据于“增大磁场”列中。
表2GMR磁阻特性的测量磁阻两端电压4V
磁感应强度/高斯
磁阻/Ω
减小磁场
增大磁场
励磁电流/mA
磁感应强度/高斯
磁阻电流/mA
磁阻/Ω
磁阻电流/mA
磁阻/Ω
100
90
80
70
60
50
40
30
20
10
5
0
-5
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
根据螺线管上标明的线圈密度,由公式
(1)计算出螺线管内的磁感应强度B。
由欧姆定律R=U/I计算磁阻。
以磁感应强度B作横座标,磁阻为纵座标作出磁阻特性曲线。
应该注意,由于模拟传感器的两个磁阻是位于磁通聚集器中,与图3相比,我们作出的磁阻曲线斜率大了约10倍,磁通聚集器结构使磁阻灵敏度大大提高。
不同外磁场强度时磁阻的变化反映了GMR的磁阻特性,同一外磁场强度下磁阻的差值反映了材料的磁滞特性。
三、GMR开关(数字)传感器的磁电转换特性曲线测量
将GMR模拟传感器与比较电路,晶体管放大电路集成在一起,就构成GMR开关(数字)传感器,结构如图14所示。
比较电路的功能是,当电桥电压低于比较电压时,输出低电平。
当电桥电压高于比较电压时,输出高电平。
选择适当的GMR电桥并结合调节比较电压,可调节开关传感器开关点对应的磁场强度。
图15是某种GMR开关传感器的磁电转换特性曲线。
当磁场强度的绝对值从低增加到12高斯时,开关打开(输出高电平),当磁场强度的绝对值从高减小到10高斯时,开关关闭(输出低电平)。
实验装置:
巨磁阻实验仪,基本特性组件。
将GMR模拟传感器置于螺线管磁场中,功能切换按钮切换为“传感器测量”。
实验仪的4伏电压源接至基本特性组件“巨磁电阻供电”,“电路供电”接口接至基本特性组件对应的“电路供电”输入插孔,恒流源接至“螺线管电流输入”,基本特性组件“开关信号输出”接至实验仪电压表。
从50mA逐渐减小励磁电流,输出电压从高电平(开)转变为低电平(关)时记录相应的励磁电流于表3“减小磁场”列中。
当电流减至0后,交换恒流输出接线的极性,使电流反向。
再次增大电流,此时流经螺线管的电流与磁感应强度的方向为负,输出电压从低电平(关)转变为高电平(开)时记录相应的负值励磁电流于表3“减小磁场”列中。
将电流调至-50mA。
逐渐减小负向电流,输出电压从高电平(开)转变为低电平(关)时记录相应的负值励磁电流于表3“增大磁场”列中,电流到0时同样需要交换恒流输出接线的极性。
输出电压从低电平(关)转变为高电平(开)时记录相应的正值励磁电流于表3“增大磁场”列中。
表3GMR开关传感器的磁电转换特性测量高电平=V低电平=V
减小磁场
增大磁场
开关动作
励磁电流/mA
磁感应强度/高斯
开关动作
励磁电流/mA
磁感应强度/高斯
关
关
开
开
根据螺线管上标明的线圈密度,由公式
(1)计算出螺线管内的磁感应强度B。
以磁感应强度B作横座标,电压读数为纵座标作出开关传感器的磁电转换特性曲线。
利用GMR开关传感器的开关特性已制成各种接近开关,当磁性物体(可在非磁性物体上贴上磁条)接近传感器时就会输出开关信号。
广泛应用在工业生产及汽车,家电等日常生活用品中,控制精度高,恶劣环境(如高低温,振动等)下仍能正常工作。
四、用GMR模拟传感器测量电流
从图11可见,GMR模拟传感器在一定的范围内输出电压与磁场强度成线性关系,且灵敏度高,线性范围大,可以方便的将GMR制成磁场计,测量磁场强度或其它与磁场相关的物理量。
作为应用示例,我们用它来测量电流。
由理论分析可知,通有电流I的无限长直导线,与导线距离为r的一点的磁感应强度为:
B=μ0I/2πr=2I×10-7/r(3)
磁场强度与电流成正比,在r已知的条件下,测得B,就可知I。
在实际应用中,为了使GMR模拟传感器工作在线性区,提高测量精度,还常常预先给传感器施加一固定已知磁场,称为磁偏置,其原理类似于电子电路中的直流偏置。
图16模拟传感器测量电流实验原理图
实验装置:
巨磁阻实验仪,电流测量组件
实验仪的4伏电压源接至电流测量组件“巨磁电阻供电”,恒流源接至“待测电流输入”,电流测量组件“信号输出”接至实验仪电压表。
将待测电流调节至0。
将偏置磁铁转到远离GMR传感器,调节磁铁与传感器的距离,使输出约25mV。
将电流增大到300mA,按表4数据逐渐减小待测电流,从左到右记录相应的输出电压于表格“减小电流”行中。
由于恒流源本身不能提供负向电流,当电流减至0后,交换恒流输出接线的极性,使电流反向。
再次增大电流,此时电流方向为负,记录相应的输出电压。
逐渐减小负向待测电流,从右到左记录相应的输出电压于表格“增加电流”行中。
当电流减至0后,交换恒流输出接线的极性,使电流反向。
再次增大电流,此时电流方向为正,记录相应的输出电压。
将待测电流调节至0。
将偏置磁铁转到接近GMR传感器,调节磁铁与传感器的距离,使输出约150mV。
用低磁偏置时同样的实验方法,测量适当磁偏置时待测电流与输出电压的关系。
表4用GMR模拟传感器测量电流
待测电流/mA
300
200
100
0
-100
-200
-300
输出电压/mV
低磁偏置
(约25mV)
减小电流
增加电流
适当磁偏置
(约150mV)
减小电流
增加电流
表3用GMR模拟传感器测量电流
以电流读数作横坐标,电压表的读数为纵坐标作图。
分别作出4条曲线。
由测量数据及所作图形可以看出,适当磁偏置时线性较好,斜率(灵敏度)较高。
由于待测电流产生的磁场远小于偏置磁场,磁滞对测量的影响也较小,根据输出电压的大小就可确定待测电流的大小。
用GMR传感器测量电流不用将测量仪器接入电路,不会对电路工作产生干扰,既可测量直流,也可测量交流,具有广阔的应用前景。
五、GMR梯度传感器的特性及应用
将GMR电桥两对对角电阻分别置于集成电路两端,4个电阻都不加磁屏蔽,即构成梯度传感器,如图17所示。
这种传感器若置于均匀磁场中,由于4个桥臂电阻阻值变化相同,电桥输出为零。
如果磁场存在一定的梯度,各GMR电阻感受到的磁场不同,磁阻变化不一样,就会有信号输出。
图18以检测齿轮的角位移为例,说明其应用原理。
将永磁体放置于传感器上方,若齿轮是铁磁材料,永磁体产生的空间磁场在相对于齿牙不同位置时,产生不同的梯度磁场。
a位置时,输出为零。
b位置时,R1、R2感受到的磁场强度大于R3、R4,输出正电压。
c位置时,输出回归零。
d位置时,R1、R2感受到的磁场强度小于R3、R4,输出负电压。
于是,在齿轮转动过程中,每转过一个齿牙便产生一个完整的波形输出。
这一原理已普遍应用于转速(速度)与位移监控,在汽车及其它工业领域得到广泛应用。
实验装置:
巨磁阻实验仪、角位移测量组件。
将实验仪4V电压源接角位移测量组件“巨磁电阻供电”,角位移测量组件“信号输出”接实验仪电压表。
逆时针慢慢转动齿轮,当输出电压为零时记录起始角度,以后每转3度记录一次角度与电压表的读数。
转动48度齿轮转过2齿,输出电压变化2个周期。
表5齿轮角位移的测量
转动角度/度
输出电压/mV
以齿轮实际转过的度数为横坐标,电压表的读数为纵向坐标作图。
根据实验原理,GMR梯度传感器能用于车辆流量监控吗?
六、磁记录与读出
磁记录是当今数码产品记录与储存信息的最主要方式,由于巨磁阻的出现,存储密度有了成百上千倍的提高。
在当今的磁记录领域,为了提高记录密度,读写磁头是分离的。
写磁头是绕线的磁芯,线圈中通过电流时产生磁场,在磁性记录材料上记录信息。
巨磁阻读磁头利用磁记录材料上不同磁场时电阻的变化读出信息。
磁读写组件用磁卡做记录介质,磁卡通过写磁头时可写入数据,通过读磁头时将写入的数据读出来。
同学可自行设计一个二进制码,按二进制码写入数据,然后将读出的结果记录下来。
实验装置:
巨磁阻实验仪,磁读写组件,磁卡。
实验仪的4伏电压源接磁读写组件“巨磁电阻供电”,“电路供电”接口接至基本特性组件对应的“电路供电”输入插孔,磁读写组件“读出数据”接至实验仪电压表。
将需要写入与读出的二进制数据记入表6第2行。
将磁卡插入,“功能选择”按键切换为“写”状态。
缓慢移动磁卡,根据磁卡上的刻度区域切换“写0”“写1”;
将“功能选择”按键切换为“读”状态,移动磁卡至读磁头处,根据刻度区域在电压表上读出电压,记录于表6第4行。
表6二进制数字的写入与读出
十进制数字
二进制数字
磁卡区域号
1
2
3
4
5
6
7
8
读出电平
此实验演示了磁记录与磁读出的原理与过程。
(由于测试卡区域的两端数据记录可能不准确,因此实验中只记录中间的1~8号区域的数据。
)
教师签名:
实验及数据处理部分
六、实验数据处理
实验及数据处理部分
七、实验结论与分析及思考题解答
1、对实验进行总结,写出结论:
2、思考题解答: