数学高考复习大纲.docx
《数学高考复习大纲.docx》由会员分享,可在线阅读,更多相关《数学高考复习大纲.docx(18页珍藏版)》请在冰豆网上搜索。
数学高考复习大纲
2005年数学高考复习大纲(作者:
未知)
教育部考试中心2004年数学科《考试大纲》提出的考试能力要求、考试内容、考试形式与试 卷结构及根据专家分析预测提出的新观点构成了2005年数学高考复习大纲,即复习的内容、 重点、策略等。
一、考试内容的知识要求、能力要求和个性品质要求
1.知识要求
知识是指《全日制高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法.
对知识的要求由低到高分为三个层次,依次是了解、理解和掌握、灵活和综合运用,且高一级的层次要求包括低一级的层次要求.
(1)了解:
要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,并能在有关的问题中直接应用.
(2)理解和掌握:
要求对所列知识内容有较深刻的理性认识,能够解释、举例或变形、推断,并能利用知识解决有关问题.
(3)灵活和综合运用:
要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题.
【注意】在命题范围内,常用的数学技能和方法,如配方法、换元法、待定系数法、数学归纳法和数形结合法等,以及常用的逻辑推理方法,如分析法、综合法、归纳法、演绎法和反证法等,都是考查的主要内容.考查中,重在通性通法的正确与灵活的运用.
对于处理问题的重要的数学思想方法,如函数与方程、变换与转化、分类与归纳、数形的结合与分离、定常与变化的对立与统一等思想观点和方法,也将通过具体问题,测试考生掌握的程度.
2.能力要求
能力是指思维能力、运算能力、空间想像能力以及实践能力和创新意识.
(1)思维能力:
会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用演绎、归纳和类比进行推理;能合乎逻辑地、准确地进行表述.
【注意】对思维能力的考查要求,与试题的解答过程结合起来就是:
能正确领会题意,明确解题的目标与方向;会采用适当的步骤,合乎逻辑地进行推理和演算,实现解题目标;并加以正确表述.
(2)运算能力:
会根据法则、公式进行正确运算、变形和处理数据;能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.
【注意】在数学科考试中,数值计算、字符运算和各种式子的变换运算,都是重要的考查内容.应懂得恰当地应用估算、图算、近似计算和精确计算进行解题.
(3)空间想像能力:
能根据条件作出正确的图形,根据图形想像出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合与变换;会运用图形与图表等手段形象地揭示问题的本质.
【注意】空间想像能力强调的是对图形的认识、理解和应用,既会用图形表现空间形体,又会由图形想像出直观的形象;既会观察、分析各种几何要素(点、线、面、体)的相互位置关系,又能对图形进行变换分解和组合.为了增强和发展空间想像能力,必须强化空间观念,培养直觉思维的习惯,把抽象思维与形象思维结合起来.
(4)实践能力:
能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题;能阅读、理解对问题进行陈述的材料;能够对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述、说明.
(5)创新意识:
对新颖的信息、情境和设问,选择有效的方法和手段收集信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.
3.个性品质要求
个性品质是指考生个体的情感、态度和价值观.具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.
二、命题基本原则
数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自的发展过程中的纵向联系和各部分知识之间的横向联系.要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试题的结构框架.对数学基础知识的考查,要求全面又突出重点,对于支撑学科知识体系的重点知识,考查时要保持较高的比例,构成数学试题的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使考查达到必要的深度.
数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛应用于相关学科和社会生活中.因此,对于数学思想和方法的考查必然要与数学知识的考查结合进行,通过数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考查时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注意通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.
数学是一门思维的科学,是培养理性思维的重要载体,通过空间想像、直觉猜想、归纳抽象、符号表达、运算推理、演绎证明和模式构建等诸方面,对客观事物中的数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体.对能力的考查,强调"以能力立意",就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料.对知识的考查侧重于理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同的情境中去的能力,从而检测出考生个体理性思维的广度和深度,以及进一步学习的潜能.
对能力的考查,以思维能力为核心,全面考查各种能力,强调综合性、应用性,切合考生实际.运算能力是思维能力和运算技能的结合,它不仅包括数的运算,还包括式的运算,对考生运算能力的考查主要是算理和逻辑推理的考查,以含字母的式的运算为主.空间想像能力是对空间形式的观察、分析、抽象的能力,考查时注意与推理相结合.实践能力在考试中表现为解答应用问题,考查的重点是客观事物的数学化,这个过程主要是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.命题时要坚持"贴近生活,背景公平,控制难度"的原则,要把握好提出问题所涉及的数学知识和方法的深度和广度,要切合我国中学数学教学的实际,让数学应用问题的难度更加符合考生的水平,引导考生自觉地置身于现实社会的大环境中,关心自己身边的数学问题,促使学生在学习和实践中形成和发展数学应用的意识.
创新意识和创造能力是理性思维的高层次表现.在数学学习和研究过程中,知识的迁移、组合、融汇的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强.命题时要注意试题的多样性,设计考查数学主体内容,体现数学素质的题目,反映数、形运动变化的题目,研究型、探索型或开放型的题目.让考生独立思考,自主探索,发挥主观能动性,研究问题的本质,寻求合适的解题工具,梳理解题程序,为考生展现其创新意识发挥创造能力创设广阔的空间.
数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,注重展现数学的科学价值和人文价值.同时兼顾试题的基础性、综合性和现实性,重视试题的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.
三、考试内容
1.平面向量
考试内容:
向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离.平移.
考试要求:
(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.
(2)掌握向量的加法与减法.
(3)掌握实数与向量的积,理解两个向量共线的充要条件.
(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.
(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.
(6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式.
【注意】向量是数学的重要概念之一,它给平面解析几何奠定了必要的基础,同时也为物理学提供了工具,这部分内容与实际结合比较密切.在高考中的考查主要集中在两个方面:
①向量的基本概念和基本运算;②向量作为工具的应用.
2.集合、简易逻辑
考试内容:
集合.子集.补集.交集.并集.逻辑联结词.四种命题.充要条件.
考试要求:
(1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.
(2)理解逻辑联结词"或"、"且"、"非"的含义.理解四种命题及其相互关系.掌握充要条件的意义.
【注意】近年的高考题中,集合的考查通常以两种方式出现:
①考查集合的概念、集合的关系、集合的运算;②在考查其他部分内容时涉及到集合的知识.很少有正面考查逻辑的内容.逻辑与充要条件的知识往往是和其他知识结合起来考查.
3.函数
考试内容:
映射.函数.函数的单调性.
反函数.互为反函数的函数图像间的关系.
指数概念的扩充.有理指数幂的运算性质.指数函数.
对数.对数的运算性质.对数函数. 函数的应用举例.
考试要求:
(1)了解映射的概念,理解函数的概念.
(2)了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法.
(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.
(4)理解分数指数幂的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质.
(5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.
(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.
【注意】函数是高中数学的核心内容,也是学习高等数学的基础.在历年高考试卷中,占分多,比重大.考生在复习函数部分时:
①一要加深对函数概念、性质的理解;②熟练掌握与函数有关的各种解题方法和技巧;③紧密联系与本部分有关的知识,掌握综合题的解题通法和技巧.
4.不等式
考试内容:
不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值不等式.
考试要求:
(1)理解不等式的性质及其证明.
(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.
(3)掌握分析法、综合法、比较法证明简单的不等式.
(4)掌握简单不等式的解法.
(5)理解不等式|a|-|b|≤|a+b|≤|a|+|b|.
【注意】不等式在数学的各个分支中都有广泛的应用,同时还是继续学习高等数学的基础.纵观历年试题,涉及不等式内容的考题大致可分为以下几类:
①不等式的证明;②解不等式;③取值范围的问题;④应用题.
5.三角函数
考试内容:
角的概念的推广.弧度制.
任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.
两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.
正弦函数、余弦函数的图像和性质.周期函数.函数的奇偶性.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.
正弦定理.余弦定理.斜三角形解法举例.
考试要求:
(1)理解任意角的概念、弧度的意义.能正确地进行弧度与角度的换算.
(2)掌握任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义.掌握同角三角函数的基本关系式:
sin2α+cos2α=1,sinα/cosα=tanα,tanαcotα=1.掌握正弦、余弦的诱导公式.了解周期函数与最小正周期的意义.了解奇函数、偶函数的意义.
(3)掌握两角和与两角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式.
(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.
(5)了解正弦函数、余弦函数、正切函数的图像和性质,会用"五点法"画正 弦函数、余弦函数和函数y=Asin (ωx+φ)的简图,理解A、ω、φ的物理意义.
(6)会由已知三角函数值求角,并会用符号arcsinx、arccosx、arctanx表示.
(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题.
【注意】近年的高考题中,三角函数主要考查基础知识、基本技能、基本方 法,一般都在选择题与填空题中考查,多为容易或中等难度的题目.其中,同角三角函数的 基本公式和诱导公式,三角函数的图像和性质,求三角函数式的值等为考查热点.
6.数列
考试内容:
数列. 等差数列及其通项公式.等差数列前n项和公式.
等比数列及其通项公式.等比数列前n项和公式.
考试要求:
(1)理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.
(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.
(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.
【注意】本部分内容考查的重点是等差、等比数列的通项公式与前n项 和公式的灵活运用,特别要重视数列的应用性问题,尤其是数列与函数、数列与方程、数列 与不等式等的综合应用.
7.直线和圆的方程
考试内容:
直线的倾斜角和斜率.直线方程的点斜式和两点式.直线方程的一般式.
两条直线平行与垂直的条件.两条直线的交角.点到直线的距离.
用二元一次不等式表示平面区域.简单的线性规划问题.
曲线与方程的概念.由已知条件列出曲线方程.
圆的标准方程和一般方程.圆的参数方程.
考试要求:
(1)理解直线的斜率的概念,掌握过两点的直线的斜率公式.掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.
(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系.
(3)了解二元一次不等式表示平面区域.
(4)了解线性规划的意义,并会简单的应用.
(5)了解解析几何的基本思想,了解坐标法.
(6)掌握圆的标准方程和一般方程.理解圆的参数方程.
【注意】本部分内容在高考中主要考查两个类型的问题:
①基本概念和求直线方程;②直线与圆的位置关系等综合性试题.
8.圆锥曲线方程
考试内容:
椭圆及其标准方程. 椭圆的简单几何性质. 椭圆的参数方程.
双曲线及其标准方程.双曲线的简单几何性质.
抛物线及其标准方程.抛物线的简单几何性质.
考试要求:
(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程.
(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质.
(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质.
(4)了解圆锥曲线的初步应用.
【注意】圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:
①考查圆锥曲线的概念与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题.
9(B)直线、平面、简单几何体
考试内容:
平面及其基本性质.平面图形直观图的画法. 平行直线.
直线和平面平行的判定与性质;直线和平面垂直的判定;三垂线定理及其逆定理.两个平面的位置关系;空间向量及其加法、减法与数乘.空间向量的坐标表示.空间向量的数量积;直线的方向向量.异面直线所成的角.异面直线的公垂线.异面直线的距离;直线和平面垂直的性质.平面的法向量.点到平面的距离.直线和平面所成的角.向量在平面内的射影;平行平面的判定和性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定和性质;多面体.棱柱.棱锥.正多面体.球.
考试要求:
(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图.能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系.
(2)掌握直线和平面平行的判定定理和性质定理.掌握直线和平面垂直的判定定理.了解三垂线定理及其逆定理.
(3)理解空间向量的概念,掌握空间向量的加法、减法和数乘.
(4)了解空间向量的基本定理.理解空间向量坐标的概念,掌握空间向量的坐标运算.
(5)掌握空间向量的数量积的定义及其性质.掌握用直角坐标计算空间向量数量积的公式.掌握空间两点间距离公式.
(6)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念.
(7)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念.对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离.掌握直线和平面垂直的性质定理.掌握两个平面平行、垂直的判定定理和性质定理.
(8)了解多面体的概念,了解凸多面体的概念.
(9)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.
(10)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.
(11)了解正多面体的概念,了解多面体的欧拉公式.
(12)了解球的概念,掌握球的性质,掌握球的表面积、体积公式.
【注意】高考中立体几何试题主要考查的是考生的逻辑表达能力、计算能力以及空间想像能力.而在内容上,在论证的基础上求空间的角和距离类型的试题是多年来较为稳定的考查内容.
10.排列、组合、二项式定理
考试内容:
分类计数原理与分步计数原理;排列.排列数公式.
组合.组合数公式.组合数的两个性质;二项式定理.二项展开式的性质.
考试要求:
(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.
(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.
(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.
(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题
【注意】这部分内容复习的重点有:
排列组合的理论基础、原理,二项式定 理的通项公式,二项式系数的性质等.
11.概率
考试内容:
随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.
考试要求:
(1)了解随机事件的发生存在着规律性和随机事件概率的意义.
(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.
(3)了解互斥事件与相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.
(4)会计算事件在n次独立重复试验中恰好发生k次的概率.
【注意】概率与现实生活有着非常密切的联系,正因为这样,在其成为高考 内容以后就一直是高考的热点.学好概率必须掌握随机事件、互斥事件、相互独立事件等有 关概念和公式.
(理)12概率与统计
考试内容:
离散型随机变量的分布列.离散型随机变量的期望值和方差.
抽样方法.总体分布的估计.正态分布.总体特征数的估计.线性回归.
考试要求:
(1)了解离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列.
(2)了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差.
(3)会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本.
(4)会用样本频率分布去估计总体分布.
(5)了解正态分布的意义及主要性质.
(6)了解线性回归的方法和简单应用.
【注意】这部分复习的重点是随机变量的分布列、期望、方差、抽样方法与样本方差、标准方差公式.
(文)12统计
考试内容:
抽样方法.总体分布的估计;总体期望值和方差的估计.
考试要求:
(1)了解随机抽样,了解分层抽样的意义,会用它们对简单实际问题进行抽样.
(2)会用样本频率分布估计总体分布.
(3)会用样本估计总体期望值和方差.
(理)13极限
考试内容:
数学归纳法.数学归纳法应用举例.;数列的极限.
函数的极限.极限的四则运算.函数的连续性.
考试要求:
(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.
(2)了解数列极限和函数极限的概念.
(3)掌握极限的四则运算法则.会求某些数列与函数的极限.
(4)了解函数连续的意义,理解闭区间上连续函数有最大值和最小值的性质.
14.导数
考试内容:
导数的背景;导数的概念;多项式函数的导数.
利用导数研究函数的单调性和极值.函数的最大值和最小值.
考试要求:
(1)了解导数概念的实际背景.
(2)理解导数的几何意义.
(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.
(5)会利用导数求最大值和最小值的方法,解决科技、经济、社会中的某些简单实际问题.
【注意】高考考查的热点集中在求导法则以及导数在函数研究上的应用.
(理)15数系的扩充--复数
考试内容:
复数的概念;复数的加法与减法;复数的乘法与除法;数系的扩充.
考试要求:
(1)了解引进复数的必要性.理解复数的有关概念.掌握复数的代数表示和几何意义
(2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算.
(3)了解从自然数系到复数系扩充的基本思想.
【注意】近年高考对复数的考查的难度略有降低,通常为容易题,少数为中档题,主要考查的是复数的基本概念、基本运算、复数与其他内容(如方程、函数等)的综合问题.
四、考试形式及试卷结构
考试采用闭卷、笔试形式.全卷满分为150分,考试时间为120分钟.
全试卷包括Ⅰ卷和Ⅱ卷.Ⅰ卷为选择题;Ⅱ卷为非选择题.
试卷内容包括《高中数学教学大纲》的必修课与(文)选修Ⅰ(理)选修Ⅱ的教学内容.
试题分选择题、填空题和解答题三种题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;解答题包括计算题、证明题和应用题等,解答应写出文字说明、演算步骤或推证过程.三种题型分数的百分比约为:
选择题40%,填空题10%,解答题50%.
试题按其难度分为容易题、中等题和难题.难度在0.7以上的题为容易题,难度在0.4~0.7之间的题为中等题,难度在0.4以下的题为难题.三种试题分值之比为3∶5∶2.选修课内容以容易题和中等题为主.
【注意】本部分内容每年的变化都不会很大.复习时,大家可以根据选择题 、填空题、解答题的占分比例,结合自己的特点决定对各类题型的复习用时;也可以根据个人的实际情况决定对占80%分值的难度在0.4以上和20%分值的难度在0.4以下的题目的复习时间分配.
五、高考数学复习的一些建议
(一)数学复习的基本要求
数学复习的内容可分为基础知识和基础解题技能两部分.在复习中,要注意基本概念、基本公式、基本定律和公理的辨析