组合机床液压设计.docx

上传人:b****9 文档编号:25636593 上传时间:2023-06-10 格式:DOCX 页数:32 大小:29.03KB
下载 相关 举报
组合机床液压设计.docx_第1页
第1页 / 共32页
组合机床液压设计.docx_第2页
第2页 / 共32页
组合机床液压设计.docx_第3页
第3页 / 共32页
组合机床液压设计.docx_第4页
第4页 / 共32页
组合机床液压设计.docx_第5页
第5页 / 共32页
点击查看更多>>
下载资源
资源描述

组合机床液压设计.docx

《组合机床液压设计.docx》由会员分享,可在线阅读,更多相关《组合机床液压设计.docx(32页珍藏版)》请在冰豆网上搜索。

组合机床液压设计.docx

组合机床液压设计

题 目

组合机床液压系统设计

 

1、课程设计的目的

学生在完成《液压传动与控制》课程学习的基础上,运用所学的液压基本知识,根据液压元件、各种液压回路的基本原理,独立完成液压回路设计任务;从而使学生在完成液压回路设计的过程中,强化对液压元器件性能的掌握,理解不同回路在系统中的各自作用。

能够对学生起到加深液压传动理论的掌握和强化实际运用能力的锻炼。

 

 

2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等)

试设计一台铣削专用机床的液压系统,要求液压系统完成的工作循环是:

工件夹紧    工作台快进     台1工进    工作台2工进    台快退     工件松开。

用平面导轨。

系统参数如附表序号E8数据。

  完成设计计算,拟定系统方案图,确定各液压元件的型号及尺寸,设计液压缸。

 

 

3、主要参考文献

[1]章宏甲主编,《液压与气压传动》,机械工业出版社出版2007.1  

[2]路甬祥主编.液压气动技术手册.北京.机械工业出版社.2002

[3]雷天觉主编.液压工程手册.北京.机械工业出版社.1990

 

 

4、课程设计工作进度计划

   内容

学时

明确机床对液压系统的要求,进行工作过程分析

4

初步确定液压系统的参数,进行工况分析和负载图的编制

14

确定液压系统方案,拟订液压系统图

4

确定液压制造元件的类型并选择相应的液压元件,确定辅助装置

4

液压系统的性能验算

2

液压油箱的结构设计,制图及编制技术文件

12

合计

1周

 

指导教师(签字)

 

日期

2008年6 月24日

 

教研室意见:

 

 

年   月   日

 

学生(签字):

杜爱兄

 接受任务时间:

 

 

 

 

 

 

 

 

注:

任务书由指导教师填写。

题目E:

组合机床液压系统设计

   试设计一台铣削专用机床的液压系统,要求液压系统完成的工作循环是:

工件夹紧    工作台快进   工作台1工进    工作台2工进  工作台快退     工件松开。

用平面导轨。

  完成设计计算,拟定系统方案图,确定各液压元件的型号及尺寸,设计液压缸。

 

参数

E1

E2

E3

E4

E5

E6

E7

E8

运动部件的重力(N)

30000

40000

35000

25000

45000

32000

36000

28000

快进、快退速度(m/min)

5

4

6

3

4

6

5

6

工进速度(mm/min)

50----1200

40----1000

45----1000

60---1200

60--------1200

60----1200

60-------1200

60-------1200

最大行程(mm)

800

850

650

750

860

900

780

900

工进行程(mm)

180

200

220

160

190

250

200

220

最大切削力(N)

20000

25000

22000

18000

30000

21000

24000

18000

夹紧缸的行程(mm)

40

45

50

55

56

60

65

75

夹紧力(N)

30000

42000

36000

25000

45000

31000

35000

28000

 

 

 

液压传动系统设计与计算

液压系统设计的步骤大致如下:

1.明确设计要求,进行工况分析。

2.初定液压系统的主要参数。

3.拟定液压系统原理图。

4.计算和选择液压元件。

5.估算液压系统性能。

6.绘制工作图和编写技术文件。

根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。

第一节明确设计要求进行工况分析

在设计液压系统时,首先应明确以下问题,并将其作为设计依据。

1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。

2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。

3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。

图9-1位移循环图

在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。

一、运动分析

主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。

1.位移循环图L—t

图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。

该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。

2.速度循环图v—t(或v—L)

工程中液压缸的运动特点可归纳为三种类型。

图9-2为三种类型液压缸的v—t图,第一种如图9-2中实线所示,液压缸开始作匀加速运动,然后匀速运动,

图9-2速度循环图

最后匀减速运动到终点;第二种,液压缸在总行程的前一半作匀加速运动,在另一半作匀减速运动,且加速度的数值相等;第三种,液压缸在总行程的一大半以上以较小的加速度作匀加速运动,然后匀减速至行程终点。

v—t图的三条速度曲线,不仅清楚地表明了三种类型液压缸的运动规律,也间接地表明了三种工况的动力特性。

二、动力分析

动力分析,是研究机器在工作过程中,其执行机构的受力情况,对液压系统而言,就是研究液压缸或液压马达的负载情况。

1.液压缸的负载及负载循环图

(1)液压缸的负载力计算。

工作机构作直线往复运动时,液压缸必须克服的负载由六部分组成:

F=Fc+Ff+Fi+FG+Fm+Fb            (9-1)

式中:

Fc为切削阻力;Ff为摩擦阻力;Fi为惯性阻力;FG为重力;Fm为密封阻力;Fb为排油阻力。

图9-3导轨形式

①切削阻力Fc:

为液压缸运动方向的工作阻力,对于机床来说就是沿工作部件运动方向的切削力,此作用力的方向如果与执行元件运动方向相反为正值,两者同向为负值。

该作用力可能是恒定的,也可能是变化的,其值要根据具体情况计算或由实验测定。

                      

②摩擦阻力Ff:

为液压缸带动的运动部件所受的摩擦阻力,它与导轨的形状、放置情况和运动状态有关,其

计算方法可查有关的设计手册。

图9-3为最常见的两种导轨形式,其摩擦阻力的值为:

平导轨:

    Ff=f∑Fn            (9-2)

V形导轨:

    Ff=f∑Fn/[sin(α/2)]      (9-3)

式中:

f为摩擦因数,参阅表9-1选取;∑Fn为作用在导轨上总的正压力或沿V形导轨横截面中心线方向的总作用力;α为V形角,一般为90°。

      

③惯性阻力Fi。

惯性阻力Fi为运动部件在启动和制动过程中的惯性力,可按下式计算:

        

          (9-4)

表9-1    摩擦因数f

导轨类型

导轨材料

运动状态

摩擦因数(f)

滑动导轨

铸铁对铸铁

启动时

低速(v<0.16m/s)高速(v>0.16m/s)

0.15~0.20?

0.1~0.12?

0.05~0.08

滚动导轨

铸铁对滚柱(珠)  淬火钢导轨对滚柱(珠)

0.005~0.02?

0.003~0.006

静压导轨

铸铁

0.005

式中:

m为运动部件的质量(kg);a为运动部件的加速度(m/s2);G为运动部件的重量(N);g为重力加速度,g=9.81(m/s2);Δv为速度变化值(m/s);

Δt为启动或制动时间(s),一般机床Δt=0.1~0.5s,运动部件重量大的取大值。

④重力FG:

垂直放置和倾斜放置的移动部件,其本身的重量也成为一种负载,当上移时,负载为正值,下移时为负值。

⑤密封阻力Fm:

密封阻力指装有密封装置的零件在相对移动时的摩擦力,其值与密封装置的类型、液压缸的制造质量和油液的工作压力有关。

在初算时,可按缸的机械效率(ηm=0.9)考虑;验算时,按密封装置摩擦力的计算公式计算。

⑥排油阻力Fb:

排油阻力为液压缸回油路上的阻力,该值与调速方案、系统所要求的稳定性、执行元件等因素有关,在系统方案未确定时无法计算,可放在液压缸的设计计算中考虑。

(2)液压缸运动循环各阶段的总负载力。

液压缸运动循环各阶段的总负载力计算,一般包括启动加速、快进、工进、快退、减速制动等几个阶段,每个阶段的总负载力是有区别的。

①启动加速阶段:

这时液压缸或活塞处于由静止到启动并加速到一定速度,其总负载力包括导轨的摩擦力、密封装置的摩擦力(按缸的机械效率ηm=0.9计算)、重力和惯性力等项,即:

F=Ff+Fi±FG+Fm+Fb                (9-5)

②快速阶段:

    F=Ff±FG+Fm+Fb?

                (9-6)?

③工进阶段:

    F=Ff+Fc±FG+Fm+Fb?

                (9-7)?

④减速:

    F=Ff±FG-Fi+Fm+Fb?

                (9-8)?

对简单液压系统,上述计算过程可简化。

例如采用单定量泵供油,只需计算工进阶段的总负载力,若简单系统采用限压式变量泵或双联泵供油,则只需计算快速阶段和工进阶段的总负载力。

(3)液压缸的负载循环图。

对较为复杂的液压系统,为了更清楚的了解该系统内各液压缸(或液压马达)的速度和负载的

变化规律,应根据各阶段的总负载力和它所经历的工作时间t或位移L按相同的坐标绘制液压缸的负载时间(F—t)或负载位移(F—L)图,然后将各液压缸在同一时间t(或位移)的负载力叠加。

图9-4负载循环图

图9-4为一部机器的F—t图,其中:

0~t1为启动过程;t1~t2为加速过程;t2~t3为恒速过程;t3~t4为制动过程。

它清楚地表明了液压缸在动作循环内负载的规律。

图中最大负载是初选液压缸工作压力和确定液压缸结构尺寸的依据。

2.液压马达的负载

工作机构作旋转运动时,液压马达必须克服的外负载为:

M=Me+Mf+Mi?

    (9-9)

(1)工作负载力矩Me。

工作负载力矩可能是定值,也可能随时间变化,应根据机器工作条件进行具体分析。

(2)摩擦力矩Mf。

为旋转部件轴颈处的摩擦力矩,其计算公式为:

Mf=GfR(N·m)                (9-10)

式中:

G为旋转部件的重量(N);f为摩擦因数,启动时为静摩擦因数,启动后为动摩擦因数;R为轴颈半径(m)。

(3)惯性力矩Mi。

为旋转部件加速或减速时产生的惯性力矩,其计算公式为:

Mi=Jε=J(N·m)                (9-11)

式中:

ε为角加速度(r/s2);Δω为角速度的变化(r/s);Δt为加速或减速时间(s);J为旋转部件的转动惯量(kg·m2),J=1GD2/4g。

式中:

GD2为回转部件的飞轮效应(Nm2)。

各种回转体的GD2可查《机械设计手册》。

根据式(9-9),分别算出液压马达在一个工作循环内各阶段的负载大小,便可绘制液压马达的负载循环图。

第二节确定液压系统主要参数

一、液压缸的设计计算

1.初定液压缸工作压力液压缸工作压力主要根据运动循环各阶段中的最大总负载力来确定,此外,还需要考虑以下因素:

(1)各类设备的不同特点和使用场合。

(2)考虑经济和重量因素,压力选得低,则元件尺寸大,重量重;压力选得高一些,则元件尺寸小,重量轻,但对元件的制造精度,密封性能要求高。

所以,液压缸的工作压力的选择有两种方式:

一是根据机械类型选;二是根据切削负载选。

如表9-2、表9-3所示。

表9-2        按负载选执行文件的工作压力

负载/N

<5000

500~10000

10000~20000

20000~30000

30000~50000

>50000

工作压力/MPa

≤0.8~1

1.5~2

2.5~3

3~4

4~5

>5

表9-3        按机械类型选执行文件的工作压力

机械类型

机    床

农业机械

工程机械

磨床

组合机床

龙门刨床

拉床

工作压力/MPa

a≤2

3~5

≤8

8~10

10~16

20~32

2.液压缸主要尺寸的计算

缸的有效面积和活塞杆直径,可根据缸受力的平衡关系具体计算,详见第四章第二节。

3.液压缸的流量计算

液压缸的最大流量:

    qmax=A·vmax(m3/s)            (9-12)

式中:

A为液压缸的有效面积A1或A2(m2);vmax为液压缸的最大速度(m/s)。

液压缸的最小流量:

    qmin=A·vmin(m3/s)            (9-13)

式中:

vmin为液压缸的最小速度。

液压缸的最小流量qmin,应等于或大于流量阀或变量泵的最小稳定流量。

若不满足此要求时,则需重新选定液压缸的工作压力,使工作压力低一些,缸的有效工作面积大一些,所需最小流量qmin也大一些,以满足上述要求。

流量阀和变量泵的最小稳定流量,可从产品样本中查到。

二、液压马达的设计计算

1.计算液压马达排量  液压马达排量根据下式决定:

vm=6.28T/Δpmηmin(m3/r)            (9-14)

式中:

T为液压马达的负载力矩(N·m);Δpm为液压马达进出口压力差(N/m3);ηmin为液压马达的机械效率,一般齿轮和柱塞马达取0.9~0.95,叶片马达取0.8~0.9。

2.计算液压马达所需流量液压马达的最大流量:

qmax=vm·nmax(m3/s)

式中:

vm为液压马达排量(m3/r);nmax为液压马达的最高转速(r/s)。

第三节液压元件的选择

一、液压泵的确定与所需功率的计算

1.液压泵的确定

(1)确定液压泵的最大工作压力。

液压泵所需工作压力的确定,主要根据液压缸在工作循环各阶段所需最大压力p1,再加上油泵的出油口到缸进油口处总的压力损失ΣΔp,即

pB?

=p1+ΣΔp                (9-15)

ΣΔp包括油液流经流量阀和其他元件的局部压力损失、管路沿程损失等,在系统管路未设计之前,可根据同类系统经验估计,一般管路简单的节流阀调速系统?

ΣΔp为(2~5)×105Pa,用调速阀及管路复杂的系统ΣΔp为(5~15)×105Pa,ΣΔp也可只考虑流经各控制阀的压力损失,而将管路系统的沿程损失忽略不计,各阀的额定压力损失可从液压元件手册或产品样本中查找,也可参照表9-4选取。

表9-4      常用中、低压各类阀的压力损失(Δpn)

阀名

Δpn(×105Pa)

阀名

Δpn(×105Pa)

阀名

Δpn(×105Pa)

阀名

Δpn(×105Pa)

单向阀

0.3~0.5

背压阀

3~8

行程阀

1.5~2

转阀

1.5~2

换向阀

1.5~3

节流阀

2~3

顺序阀

1.5~3

调速阀

3~5

(2)确定液压泵的流量qB。

泵的流量qB根据执行元件动作循环所需最大流量qmax和系统的泄漏确定。

?

①多液压缸同时动作时,液压泵的流量要大于同时动作的几个液压缸(或马达)所需的最大流量,并应考虑系统的泄漏和液压泵磨损后容积效率的下降,即

qB≥K(Σq)max(m3/s)              (9-16)

式中:

K为系统泄漏系数,一般取1.1~1.3,大流量取小值,小流量取大值;(Σq)max为同时动作的液压缸(或马达)的最大总流量(m3/s)。

②采用差动液压缸回路时,液压泵所需流量为:

qB≥K(A1-A2)vmax(m3/s)            (9-17)

式中:

A1,A2为分别为液压缸无杆腔与有杆腔的有效面积(m2);vmax为活塞的最大移动速度(m/s)。

③当系统使用蓄能器时,液压泵流量按系统在一个循环周期中的平均流量选取,即

?

qB=ViK/Ti                (9-18)?

式中:

Vi为液压缸在工作周期中的总耗油量(m3);Ti为机器的工作周期(s);Z为液压缸的个数。

(3)选择液压泵的规格:

根据上面所计算的最大压力pB和流量qB,查液压元件产品样本,选择与PB和qB相当的液压泵的规格型号。

上面所计算的最大压力pB是系统静态压力,系统工作过程中存在着过渡过程的动态压力,而动态压力往往比静态压力高得多,所以泵的额定压力pB应比系统最高压力大25%~60%,使液压泵有一定的压力储备。

若系统属于高压范围,压力储备取小值;若系统属于中低压范围,压力储备取大值。

(4)确定驱动液压泵的功率。

①当液压泵的压力和流量比较衡定时,所需功率为:

p=pBqB/103ηB(kW)          (9-19)?

式中:

pB为液压泵的最大工作压力(N/m2);qB为液压泵的流量(m3/s);ηB为液压泵的总效率,各种形式液压泵的总效率可参考表9-5估取,液压泵规格大,取大值,反之取小值,定量泵取大值,变量泵取小值。

表9-5  液压泵的总效率

液压泵类型

齿轮泵

螺杆泵

叶片泵

柱塞泵

总效率

0.6~0.7

0.65~0.80

0.60~0.75

0.80~0.85

②在工作循环中,泵的压力和流量有显著变化时,可分别计算出工作循环中各个阶段所需的驱动功率,然后求其平均值,即

p=        (9-20)

式中:

t1,t2,…,tn为一个工作循环中各阶段所需的时间(s);P1,P2,…,Pn为一个工作循环中各阶段所需的功率(kW)。

按上述功率和泵的转速,可以从产品样本中选取标准电动机,再进行验算,使电动机发出最大功率时,其超载量在允许范围内。

二、阀类元件的选择

1.选择依据

选择依据为:

额定压力,最大流量,动作方式,安装固定方式,压力损失数值,工作性能参数和工作寿命等。

2.选择阀类元件应注意的问题

(1)应尽量选用标准定型产品,除非不得已时才自行设计专用件。

(2)阀类元件的规格主要根据流经该阀油液的最大压力和最大流量选取。

选择溢流阀时,应按液压泵的最大流量选取;选择节流阀和调速阀时,应考虑其最小稳定流量满足机器低速性能的要求。

(3)一般选择控制阀的额定流量应比系统管路实际通过的流量大一些,必要时,允许通过阀的最大流量超过其额定流量的20%。

三、蓄能器的选择

1.蓄能器用于补充液压泵供油不足时,其有效容积为:

V=ΣAiLiK-qBt(m3)            (9-21)

式中:

A为液压缸有效面积(m2);L为液压缸行程(m);K为液压缸损失系数,估算时可取K=1.2;qB为液压泵供油流量(m3/s);t为动作时间(s)。

2.蓄能器作应急能源时,其有效容积为:

V=ΣAiLiK(m3)                (9-22)

当蓄能器用于吸收脉动缓和液压冲击时,应将其作为系统中的一个环节与其关联部分一起综合考虑其有效容积。

根据求出的有效容积并考虑其他要求,即可选择蓄能器的形式。

四、管道的选择

1.油管类型的选择

液压系统中使用的油管分硬管和软管,选择的油管应有足够的通流截面和承压能力,同时,应尽量缩短管路,避免急转弯和截面突变。

(1)钢管:

中高压系统选用无缝钢管,低压系统选用焊接钢管,钢管价格低,性能好,使用广泛。

(2)铜管:

紫铜管工作压力在6.5~10?

MPa以下,易变曲,便于装配;黄铜管承受压力较高,达25MPa,不如紫铜管易弯曲。

铜管价格高,抗震能力弱,易使油液氧化,应尽量少用,只用于液压装置配接不方便的部位。

(3)软管:

用于两个相对运动件之间的连接。

高压橡胶软管中夹有钢丝编织物;低压橡胶软管中夹有棉线或麻线编织物;尼龙管是乳白色半透明管,承压能力为2.5~8MPa,多用于低压管道。

因软管弹性变形大,容易引起运动部件爬行,所以软管不宜装在液压缸和调速阀之间。

2.油管尺寸的确定

(1)油管内径d按下式计算:

d=            (9-23)

式中:

q为通过油管的最大流量(m3/s);v为管道内允许的流速(m/s)。

一般吸油管取0.5~5(m/s);压力油管取2.5~5(m/s);回油管取1.5~2(m/s)。

(2)油管壁厚δ按下式计算:

δ≥p·d/2〔σ〕            (9-24)?

式中:

p为管内最大工作压力;〔σ〕为油管材料的许用压力,〔σ〕=σb/n;σb为材料的抗拉强度;n为安全系数,钢管p<7MPa时,取n=8;p<17.5MPa时,取n=6;p>17.5MPa时,取n=4。

根据计算出的油管内径和壁厚,查手册选取标准规格油管。

五、油箱的设计

油箱的作用是储油,散发油的热量,沉淀油中杂质,逸出油中的气体。

其形式有开式和闭式两种:

开式油箱油液液面与大气相通;闭式油箱油液液面与大气隔绝。

开式油箱应用较多。

1.油箱设计要点

(1)油箱应有足够的容积以满足散热,同时其容积应保证系统中油液全部流回油箱时不渗出,油液液面不应超过油箱高度的80%。

(2)吸箱管和回油管的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1