最新小学应用题解题思路.docx

上传人:b****9 文档编号:25613123 上传时间:2023-06-10 格式:DOCX 页数:14 大小:20.92KB
下载 相关 举报
最新小学应用题解题思路.docx_第1页
第1页 / 共14页
最新小学应用题解题思路.docx_第2页
第2页 / 共14页
最新小学应用题解题思路.docx_第3页
第3页 / 共14页
最新小学应用题解题思路.docx_第4页
第4页 / 共14页
最新小学应用题解题思路.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

最新小学应用题解题思路.docx

《最新小学应用题解题思路.docx》由会员分享,可在线阅读,更多相关《最新小学应用题解题思路.docx(14页珍藏版)》请在冰豆网上搜索。

最新小学应用题解题思路.docx

最新小学应用题解题思路

 

(一)整数和小数的应用

简单应用题

  

(1)简单应用题:

只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。

  

(2)解题步骤:

  a审题理解题意:

了解应用题的内容,知道应用题的条件和问题。

读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。

也可以复述条件和问题,帮助理解题意。

  b选择算法和列式计算:

这是解答应用题的中心工作。

从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。

  C检验:

就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。

如果发现错误,马上改正。

复合应用题

  

(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。

  

(2)含有三个已知条件的两步计算的应用题。

  求比两个数的和多(少)几个数的应用题。

  比较两数差与倍数关系的应用题。

  (3)含有两个已知条件的两步计算的应用题。

  已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。

  已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。

  (4)解答连乘连除应用题。

  (5)解答三步计算的应用题。

  (6)解答小数计算的应用题:

小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。

  答案:

根据计算的结果,先口答,逐步过渡到笔答。

  (7)解答加法应用题:

  a求总数的应用题:

已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

  b求比一个数多几的数应用题:

已知甲数是多少和乙数比甲数多多少,求乙数是多少。

  (8)解答减法应用题:

  a求剩余的应用题:

从已知数中去掉一部分,求剩下的部分。

  -b求两个数相差的多少的应用题:

已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

  c求比一个数少几的数的应用题:

已知甲数是多少,,乙数比甲数少多少,求乙数是多少。

  (9)解答乘法应用题:

  a求相同加数和的应用题:

已知相同的加数和相同加数的个数,求总数。

  b求一个数的几倍是多少的应用题:

已知一个数是多少,另一个数是它的几倍,求另一个数是多少。

  (10)解答除法应用题:

  a把一个数平均分成几份,求每一份是多少的应用题:

已知一个数和把这个数平均分成几份的,求每一份是多少。

  b求一个数里包含几个另一个数的应用题:

已知一个数和每份是多少,求可以分成几份。

  C求一个数是另一个数的的几倍的应用题:

已知甲数乙数各是多少,求较大数是较小数的几倍。

  d已知一个数的几倍是多少,求这个数的应用题。

  (11)常见的数量关系:

  总价=单价×数量

  路程=速度×时间

  工作总量=工作时间×工效

总产量=单产量×数量

典型应用题

  具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。

  

(1)平均数问题:

平均数是等分除法的发展。

  解题关键:

在于确定总数量和与之相对应的总份数。

  算术平均数:

已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。

数量关系式:

数量之和÷数量的个数=算术平均数。

  加权平均数:

已知两个以上若干份的平均数,求总平均数是多少。

  数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。

  差额平均数:

是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

  数量关系式:

(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。

  例:

一辆汽车以每小时100千米的速度从甲地开往乙地,又以每小时60千米的速度从乙地开往甲地。

求这辆车的平均速度。

  分析:

求汽车的平均速度同样可以利用公式。

此题可以把甲地到乙地的路程设为“1”,则汽车行驶的总路程为“2”,从甲地到乙地的速度为100,所用的时间为,汽车从乙地到甲地速度为60千米,所用的时间是,汽车共行的时间为+=,汽车的平均速度为2÷=75(千米)

  

(2)归一问题:

已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

  根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

  根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

  一次归一问题,用一步运算就能求出“单一量”的归一问题。

又称“单归一。

  两次归一问题,用两步运算就能求出“单一量”的归一问题。

又称“双归一。

  正归一问题:

用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

  反归一问题:

用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

  解题关键:

从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

  数量关系式:

单一量×份数=总数量(正归一)

  总数量÷单一量=份数(反归一)

  例一个织布工人,在七月份织布4774米,照这样计算,织布6930米,需要多少天?

  分析:

必须先求出平均每天织布多少米,就是单一量。

6930÷(4774÷31)=45(天)

  (3)归总问题:

是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。

  特点:

两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。

  数量关系式:

单位数量×单位个数÷另一个单位数量=另一个单位数量单位数量×单位个数÷另一个单位数量=另一个单位数量。

  例修一条水渠,原计划每天修800米,6天修完。

实际4天修完,每天修了多少米?

  分析:

因为要求出每天修的长度,就必须先求出水渠的长度。

所以也把这类应用题叫做“归总问题”。

不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。

800×6÷4=1200(米)

  (4)和差问题:

已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。

  解题关键:

是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。

  解题规律:

(和+差)÷2=大数大数-差=小数

  (和-差)÷2=小数和-小数=大数

  例某加工厂甲班和乙班共有工人94人,因工作需要临时从乙班调46人到甲班工作,这时乙班比甲班人数少12人,求原来甲班和乙班各有多少人?

  分析:

从乙班调46人到甲班,对于总数没有变化,现在把乙数转化成2个乙班,即94-12,由此得到现在的乙班是(94-12)÷2=41(人),乙班在调出46人之前应该为41+46=87(人),甲班为94-87=7(人)

  (5)和倍问题:

已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。

  解题关键:

找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。

求出倍数和之后,再求出标准的数量是多少。

根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。

  解题规律:

和÷倍数和=标准数标准数×倍数=另一个数

  例:

汽车运输场有大小货车115辆,大货车比小货车的5倍多7辆,运输场有大货车和小汽车各有多少辆?

  分析:

大货车比小货车的5倍还多7辆,这7辆也在总数115辆内,为了使总数与(5+1)倍对应,总车辆数应(115-7)辆。

  列式为(115-7)÷(5+1)=18(辆),18×5+7=97(辆)

(6)差倍问题:

已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。

  解题规律:

两个数的差÷(倍数-1)=标准数标准数×倍数=另一个数。

  例甲乙两根绳子,甲绳长63米,乙绳长29米,两根绳剪去同样的长度,结果甲所剩的长度是乙绳长的3倍,甲乙两绳所剩长度各多少米?

各减去多少米?

  分析:

两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的3倍,实比乙绳多(3-1)倍,以乙绳的长度为标准数。

列式(63-29)÷(3-1)=17(米)…乙绳剩下的长度,17×3=51(米)…甲绳剩下的长度,29-17=12(米)…剪去的长度。

  (7)行程问题:

关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。

解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。

  解题关键及规律:

  同时同地相背而行:

路程=速度和×时间。

  同时相向而行:

相遇时间=速度和×时间

  同时同向而行(速度慢的在前,快的在后):

追及时间=路程速度差。

  同时同地同向而行(速度慢的在后,快的在前):

路程=速度差×时间。

  例甲在乙的后面28千米,两人同时同向而行,甲每小时行16千米,乙每小时行9千米,甲几小时追上乙?

  分析:

甲每小时比乙多行(16-9)千米,也就是甲每小时可以追近乙(16-9)千米,这是速度差。

  已知甲在乙的后面28千米(追击路程),28千米里包含着几个(16-9)千米,也就是追击所需要的时间。

列式28÷(16-9)=4(小时)

  (8)流水问题:

一般是研究船在“流水”中航行的问题。

它是行程问题中比较特殊的一种类型,它也是一种和差问题。

它的特点主要是考虑水速在逆行和顺行中的不同作用。

  船速:

船在静水中航行的速度。

  水速:

水流动的速度。

  顺水速度:

船顺流航行的速度。

  逆水速度:

船逆流航行的速度。

  顺速=船速+水速

  逆速=船速-水速

  解题关键:

因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。

解题时要以水流为线索。

  解题规律:

船行速度=(顺水速度+逆流速度)÷2

  流水速度=(顺流速度逆流速度)÷2

  路程=顺流速度×顺流航行所需时间

  路程=逆流速度×逆流航行所需时间

  例一只轮船从甲地开往乙地顺水而行,每小时行28千米,到乙地后,又逆水航行,回到甲地。

逆水比顺水多行2小时,已知水速每小时4千米。

求甲乙两地相距多少千米?

  分析:

此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。

已知顺水速度和水流速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用2小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。

  列式为284×2=20(千米)20×2=40(千米)40÷(4×2)=5(小时)28×5=140(千米)。

  (9)还原问题:

已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。

  解题关键:

要弄清每一步变化与未知数的关系。

  解题规律:

从最后结果出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。

  根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。

  解答还原问题时注意观察运算的顺序。

若需要先算加减法,后算乘除法时别忘记写括号。

  例某小学三年级四个班共有学生168人,如果四班调3人到三班,三班调6人到二班,二班调6人到一班,一班调2人到四班,则四个班的人数相等,四个班原有学生多少人?

  分析:

当四个班人数相等时,应为168÷4,以四班为例,它调给三班3人,又从一班调入2人,所以四班原有的人数减去3再加上2等于平均数。

四班原有人数列式为168÷4-2+3=43(人)

  一班原有人数列式为168÷4-6+2=38(人);二班原有人数列式为168÷4-6+6=42(人)三班原有人数列式为168÷4-3+6=45(人)。

(6)差倍问题:

已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。

  解题规律:

两个数的差÷(倍数-1)=标准数标准数×倍数=另一个数。

  例甲乙两根绳子,甲绳长63米,乙绳长29米,两根绳剪去同样的长度,结果甲所剩的长度是乙绳长的3倍,甲乙两绳所剩长度各多少米?

各减去多少米?

  分析:

两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的3倍,实比乙绳多(3-1)倍,以乙绳的长度为标准数。

列式(63-29)÷(3-1)=17(米)…乙绳剩下的长度,17×3=51(米)…甲绳剩下的长度,29-17=12(米)…剪去的长度。

  (7)行程问题:

关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。

解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。

  解题关键及规律:

  同时同地相背而行:

路程=速度和×时间。

  同时相向而行:

相遇时间=速度和×时间

  同时同向而行(速度慢的在前,快的在后):

追及时间=路程速度差。

  同时同地同向而行(速度慢的在后,快的在前):

路程=速度差×时间。

  例甲在乙的后面28千米,两人同时同向而行,甲每小时行16千米,乙每小时行9千米,甲几小时追上乙?

  分析:

甲每小时比乙多行(16-9)千米,也就是甲每小时可以追近乙(16-9)千米,这是速度差。

  已知甲在乙的后面28千米(追击路程),28千米里包含着几个(16-9)千米,也就是追击所需要的时间。

列式28÷(16-9)=4(小时)

  (8)流水问题:

一般是研究船在“流水”中航行的问题。

它是行程问题中比较特殊的一种类型,它也是一种和差问题。

它的特点主要是考虑水速在逆行和顺行中的不同作用。

  船速:

船在静水中航行的速度。

  水速:

水流动的速度。

  顺水速度:

船顺流航行的速度。

  逆水速度:

船逆流航行的速度。

  顺速=船速+水速

  逆速=船速-水速

  解题关键:

因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。

解题时要以水流为线索。

  解题规律:

船行速度=(顺水速度+逆流速度)÷2

  流水速度=(顺流速度逆流速度)÷2

  路程=顺流速度×顺流航行所需时间

  路程=逆流速度×逆流航行所需时间

  例一只轮船从甲地开往乙地顺水而行,每小时行28千米,到乙地后,又逆水航行,回到甲地。

逆水比顺水多行2小时,已知水速每小时4千米。

求甲乙两地相距多少千米?

  分析:

此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。

已知顺水速度和水流速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用2小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。

  列式为284×2=20(千米)20×2=40(千米)40÷(4×2)=5(小时)28×5=140(千米)。

  (9)还原问题:

已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。

  解题关键:

要弄清每一步变化与未知数的关系。

  解题规律:

从最后结果出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。

  根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。

  解答还原问题时注意观察运算的顺序。

若需要先算加减法,后算乘除法时别忘记写括号。

  例某小学三年级四个班共有学生168人,如果四班调3人到三班,三班调6人到二班,二班调6人到一班,一班调2人到四班,则四个班的人数相等,四个班原有学生多少人?

  分析:

当四个班人数相等时,应为168÷4,以四班为例,它调给三班3人,又从一班调入2人,所以四班原有的人数减去3再加上2等于平均数。

四班原有人数列式为168÷4-2+3=43(人)

  一班原有人数列式为168÷4-6+2=38(人);二班原有人数列式为168÷4-6+6=42(人)三班原有人数列式为168÷4-3+6=45(人)。

分数和百分数的应用

  1分数加减法应用题:

  分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

  2分数乘法应用题:

  是指已知一个数,求它的几分之几是多少的应用题。

  特征:

已知单位“1”的量和分率,求与分率所对应的实际数量。

  解题关键:

准确判断单位“1”的量。

找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

  3分数除法应用题:

  求一个数是另一个数的几分之几(或百分之几)是多少。

  特征:

已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。

“一个数”是比较量,“另一个数”是标准量。

求分率或百分率,也就是求他们的倍数关系。

  解题关键:

从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。

  甲是乙的几分之几(百分之几):

甲是比较量,乙是标准量,用甲除以乙。

  甲比乙多(或少)几分之几(百分之几):

甲减乙比乙多(或少几分之几)或(百分之几)。

关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数。

  已知一个数的几分之几(或百分之几),求这个数。

  特征:

已知一个实际数量和它相对应的分率,求单位“1”的量。

  解题关键:

准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际

  数量。

  4出勤率

  发芽率=发芽种子数/试验种子数×100%

  小麦的出粉率=面粉的重量/小麦的重量×100%

  产品的合格率=合格的产品数/产品总数×100%

  职工的出勤率=实际出勤人数/应出勤人数×100%

  5工程问题:

  是分数应用题的特例,它与整数的工作问题有着密切的联系。

它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

为了解目前大学生对DIY手工艺品制作的消费情况,我们于己于人2004年3月22日下午利用下课时间在校园内进行了一次快速抽样调查。

据调查本次调查人数共50人,并收回有效问卷50份。

调查分析如下:

  解题关键:

把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。

因为是连锁店,老板的“野心”是开到便利店那样随处可见。

所以办了积分卡,方便女孩子到任何一家“漂亮女生”购物,以求便宜再便宜。

  数量关系式:

  工作总量=工作效率×工作时间

  工作效率=工作总量÷工作时间

可见“体验化消费”广受大学生的欢迎、喜欢,这是我们创业项目是否成功的关键,必须引起足够的注意。

  工作时间=工作总量÷工作效率

除了“漂亮女生”形成的价格,优惠等条件的威胁外,还有“碧芝”的物品的新颖性,创意的独特性等,我们必须充分预见到。

  工作总量÷工作效率和=合作时间

图1-5购物是对消费环境的要求分布  6纳税

  纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

随着社会经济、文化的飞跃发展,人们正从温饱型步入小康型,崇尚人性和时尚,不断塑造个性和魅力的现代文化价值观念,已成为人们的追求目标。

因此,顺应时代的饰品文化显示出强大的发展势头和越来越广的市场,从事饰品销售是有着广阔的市场空间。

  缴纳的税款叫应纳税款。

  应纳税额与各种收入的(销售额、营业额、应纳税所得额……)的比率叫做税率。

关于DIY手工艺制品的消费调查  *利息

为此,装潢美观,亮丽,富有个性化的店面环境,能引起消费者的注意,从而刺激顾客的消费欲望。

这些问题在今后经营中我们将慎重考虑的。

  存入银行的钱叫做本金。

  取款时银行多支付的钱叫做利息。

我们大学生没有固定的经济来源,但我们也不乏缺少潮流时尚的理念,没有哪个女生是不喜欢琳琅满目的小饰品,珠光宝气、穿金戴银便是时尚的时代早已被推出轨道,简洁、个性化的饰品成为现代时尚女性的钟爱。

因此饰品这一行总是吸引很多投资者的目光。

然而我们女生更注重的是感性消费,我们的消费欲望往往建立在潮流、时尚和产品的新颖性上,所以要想在饰品行业有立足之地,又尚未具备雄厚的资金条件的话,就有必要与传统首饰区别开来,自制饰品就是近一两年来沿海城市最新流行的一种。

  利息与本金的比值叫做利率。

  利息=本金×利率×时间。

(二)创业弱势分析

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 药学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1