积分方程.docx

上传人:b****9 文档编号:25342659 上传时间:2023-06-07 格式:DOCX 页数:12 大小:36.54KB
下载 相关 举报
积分方程.docx_第1页
第1页 / 共12页
积分方程.docx_第2页
第2页 / 共12页
积分方程.docx_第3页
第3页 / 共12页
积分方程.docx_第4页
第4页 / 共12页
积分方程.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

积分方程.docx

《积分方程.docx》由会员分享,可在线阅读,更多相关《积分方程.docx(12页珍藏版)》请在冰豆网上搜索。

积分方程.docx

积分方程

积分号下含有未知函数的方程。

其中未知函数以线性形式出现的,称为线性积分方程;否则称为非线性积分方程。

  积分方程起源于物理问题。

牛顿第二运动定律的出现,促进了微分方程理论的迅速发展,然而对积分方程理论发展的影响却非如此。

1823年,N.H.阿贝尔在研究地球引力场中的一个质点下落轨迹问题时提出的一个方程,后人称之为阿贝尔方程,是历史上出现最早的积分方程,但是在较长的时期未引起人们的注意。

“积分方程”一词是P.duB.雷蒙德于1888年首先提出的。

19世纪的最后两年,瑞典数学家(E.)I.弗雷德霍姆和意大利数学家V.沃尔泰拉开创了研究线性积分方程理论的先河。

从此,积分方程理论逐渐发展成为数学的一个分支。

  1899年,弗雷德霍姆在给他的老师(M.)G.米塔-列夫勒的信中,提出如下的方程

 

(1)

式中φ(x)是未知函数;λ是参数,K(x,y)是在区域0≤x,y≤1上连续的已知函数;ψ(x)是在区间0≤x≤1上连续的已知函数。

并认为方程

(1)的解可表为关于λ的两个整函数之商。

1900年,弗雷德霍姆在其论文中把

(1)称为“积分方程”,并初次建立了K(x,y)的行列式D(λ)和D(x,y,λ),证明了它们都是λ的整函数,以及当λ是D(λ)的一个零点时,则

(1)的齐次方程φ

有不恒等于零的解。

1903年,他又指出,若行列式D

(1)≠0,则有一个且只有一个函数φ(x)满足方程

(1)(λ=1),此时φ(x)可表为

从此,积分方程理论的发展进入了一个新的时期。

以下形式的积分方程

(2)

(3)

(4)

分别称为第一种、第二种、第三种弗雷德霍姆积分方程,其中K(x,y)是在区域α≤x、y≤b上连续的已知函数,称为方程的核;A(x)、ψ(x)都是在区间α≤x≤b上连续的已知函数,φ(x)是未知函数,λ是参数。

  第一、二种弗雷德霍姆积分方程是第三种弗雷德霍姆积分方程的特殊情形。

但是,第一种方程与第二种方程却有本质上的区别。

  与弗雷德霍姆几乎同时,沃尔泰拉研究了如下形式的积分方程

(5)

(6)

(7)

分别称为第一种、第二种、第三种沃尔泰拉积分方程,式中λ、φ(x)、ψ(x)和A(x)如前所述,K(x,y)是定义在三角形区域α≤y≤x≤b上的已知连续函数。

弗雷德霍姆积分方程中的核K(x,y)当x

因此沃尔泰拉积分方程是弗雷德霍姆积分方程的特殊情形。

但是这两类方程的本质是不同的。

例如,第二种沃尔泰拉积分方程对于一切λ值总可用迭代法求解,而第二种弗雷德霍姆积分方程却出现了特征值问题;又如,第一种沃尔泰拉积分方程在一定条件下可以化为等价的某个第二种沃尔泰拉积分方程,而第一种弗雷德霍姆积分方程的讨论却困难得多。

  弗雷德霍姆积分方程和沃尔泰拉积分方程的理论可以推广到多个未知函数的方程组的情形。

这时只需要把φ(x)视为未知函数向量φ(x)=(φ1(x),φ2(x),…,φn(x)),K(x,y)看作n阶方阵(Kij(x,y)),i,j=1,2,…,n,ψ(x)=(ψ1(x),ψ2(x),…,ψn(x))看作已知函数向量。

  D.希尔伯特和E.施密特对第二种弗雷德霍姆积分方程做了重要的工作,特别是关于对称核积分方程的特征值存在性,对称核关于特征函数序列的展开,以及希尔伯特-施密特展开定理等。

至于第一种弗雷德霍姆积分方程,早在1828年就为G.格林在研究位势理论以解决拉普拉斯方程的狄利克雷问题时所导出。

格林当时还指出,关于这类方程没有一般的理论。

20世纪初,E.施密特得到了方程

(2)有解的必要条件。

其后(C.-)É.皮卡指出,该条件在核K(x,y)的特征函数序列是完备时也是充分的。

但是,这一结果并没有提供一个一般的方便解法。

第一种弗雷德霍姆积分方程的系统理论,尚未建立。

  积分方程的核常是非连续的。

例如,在一维空间,核K(x,y)是具有如下形式:

式中0<α<1,H(x,y)是有界函数。

这样的核称为弱奇性核,相应的方程称为弱奇性方程。

可以证明,对弱奇性核施行如下运算:

(p、q都是正整数,K

(1)(x,y)呏K(x,y),经m次后,只要

,就得到一个有界核K(m)(x,y),而弱奇性消失了。

由此可以证明,具有弱奇性核的积分方程同样具备第二种弗雷德霍姆积分方程的一切性质。

对于n维空间的积分方程,也可以建立相应的结论。

  奇异积分方程是与弗雷德霍姆积分方程有本质区别的一类方程。

常见的奇异积分方程有两种:

一种是核具有主值意义的奇性,例如柯西核;一种是积分区域为无穷的积分方程,例如维纳-霍普夫方程。

  前一种奇异积分方程的理论是在弗雷德霍姆积分方程理论建立后的几年中产生的。

希尔伯特在研究解析函数的边值问题中发现了这种奇异积分方程。

几乎同时,(J.-)H.庞加莱在研究潮汐现象时,也发现了它。

他们的工作为这种方程奠定了理论基础。

这种奇异积分方程的一般形式为

式中l是平面上光滑闭围道,系数A(t)、K(t,τ)和ψ(t)都是给定的在l上按赫尔德意义连续的函数。

方程中的积分在通常意义下是发散的,但在一定假设下,其柯西主值存在。

这样的方程称为具有柯西核的奇异积分方程。

此外,如下具有希尔伯特核的方程

也是一种主值意义下的奇异积分方程。

对于这种奇异积分方程的研究成果及应用,苏联数学家Η.И.穆斯赫利什维利于1946年发表的专著《奇异积分方程》作了系统的总结。

  后一种奇异积分方程的重要例子是维纳-霍普夫方程。

它是20世纪20年代初在大气辐射传输问题的研究中首先得到的,在许多实际问题中有重要的应用。

  相应于弗雷德霍姆定理,对于上述两种奇异积分方程有诺特定理(此诺特为著名的诺特阿姨的弟弟,见奇异积分方程)。

  近年来,非线性积分方程的研究,有了很快的发展。

例如哈默斯坦型积分方程,即如下形式的非线性积分方程

式中K(x,y)、ƒ(y,u)都是已知函数,ƒ(y,u)关于u是非线性的。

自H.哈默斯坦于1930年提出以来,研究者不乏其人,而且已得到不少有意义的结果。

对于非线性奇异积分方程也有不少结果,但是直到现在,对于一般的非线性积分方程还没有系统的理论,即使是可解性的讨论也很困难。

  自抽象空间这个概念创立以来,如希尔伯特空间、巴拿赫空间以及算子理论的建立,使古典的积分方程以崭新的面貌出现。

例如,把积分方程(3)中出现的函数看作是巴拿赫空间X的元素,原来的积分运算以算子T代替,于是方程(3)就可写为

 (8)

  这里T是巴拿赫空间X中的一个全连续算子,ψ是X中一个已知元素,而φ是X中的未知元素。

方程(8)的齐次方程φ-λTφ=0,若对于某些λ值有不等于零元素的解,则称这些λ值为算子T的点谱,相应的元素称为特征元素。

对于方程(8)也有在巴拿赫空间X中类似的弗雷德霍姆定理。

算子T的谱分解是重要的研究课题,J.冯·诺伊曼在这方面有丰硕的研究成果。

  积分方程有广泛的应用。

微分方程某些定解问题的求解可归结为求解积分方程。

例如,为求解常微分方程初值问题

y(x0)=y0,y′(x0)=y1,只要在微分方程两端积分两次,并交换积分次序和利用初始条件,就得到与之等价的沃尔泰拉积分方程

类似地,对于常微分方程的边值问题也可得到与之等价的弗雷德霍姆积分方程。

又如,偏微分方程中拉普拉斯方程的狄利克雷问题和诺伊曼问题,可分别利用双层位势和单层位势作为中介而归结为第二种弗雷德霍姆积分方程的求解,而且是等价的。

粘性流体力学问题中的维纳-斯托克斯方程的定解问题也可化为非线性积分方程组。

这种利用位势求解微分方程的某些定解问题的方法,已有很多推广,有相当多的一阶或二阶椭圆型方程组的某些边值问题,引进类似于位势的积分算子,往往可归结为弗雷德霍姆积分方程或奇异积分方程。

  在地质学中制作地球内部的精细三维图问题。

这种图对勘探矿产、预报地震等等都很需要,但不能采用实验的方法来制作,而只能采取间接的方法解决,一般是借助尖端的精密仪器和人造卫星精确地定出地球外部点处的地球引力位势,再利用引力位势的方法归结出关于地球内部密度的第一种弗雷德霍姆积分方程。

在空气动力学中研究分子运动,考虑非均匀流体中悬浮晶粒的布朗位移和热扩散,导致了以柯尔莫哥洛夫命名的一类积分方程。

在确定飞机机翼的剖面时,需要对环流、升力、阻力等等效应进行计算,也往往导致一个积分方程(如薄翼理论的基本方程、升力线理论的方程等)。

其他如中子迁移、电磁波衍射以及经济学与人口理论等都导致奇异积分方程的研究。

  中国有不少学者致力于积分方程的理论和应用方面的研究,得到了许多有意义的结果。

 

微分方程的概念

方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。

这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。

但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。

比如:

物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。

物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。

也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。

解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式。

但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。

在数学上,解这类方程,要用到微分和导数的知识。

因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。

微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。

牛顿在建立微积分的同时,对简单的微分方程用级数来求解。

后来瑞士数学家雅各布·贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。

常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。

数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。

牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。

后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。

这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。

微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。

微分方程也就成了最有生命力的数学分支。

常微分方程的内容

如果在一个微分方程中出现的未知函数只含一个自变量,这个方程就叫做常微分方程,也可以简单地叫做微分方程。

一般地说,n阶微分方程的解含有n个任意常数。

也就是说,微分方程的解中含有任意常数的个数和方程的解数相同,这种解叫做微分方程的通解。

通解构成一个函数族。

如果根据实际问题要求出其中满足某种指定条件的解来,那么求这种解的问题叫做定解问题,对于一个常微分方程的满足定解条件的解叫做特解。

对于高阶微分方程可以引入新的未知函数,把它化为多个一阶微分方程组。

常微分方程的特点

常微分方程的概念、解法、和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、定性理论等等。

下面就方程解的有关几点简述一下,以了解常微分方程的特点。

求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。

也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。

后来的发展表明,能够求出通解的情况不多,在实际应用中所需要的多是求满足某种指定条件的特解。

当然,通解是有助于研究解的属性的,但是人们已把研究重点转移到定解问题上来。

一个常微分方程是不是有特解呢?

如果有,又有几个呢?

这是微分方程论中一个基本的问题,数学家把它归纳成基本定理,叫做存在和唯一性定理。

因为如果没有解,而我们要去求解,那是没有意义的;如果有解而又不是唯一的,那又不好确定。

因此,存在和唯一性定理对于微分方程的求解是十分重要的。

大部分的常微分方程求不出十分精确的解,而只能得到近似解。

当然,这个近似解的精确程度是比较高的。

另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件也是近似的,这种近似之间的影响和变化还必须在理论上加以解决。

现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。

这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。

应该说,应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。

偏微分方程的起源

如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。

在科学技术日新月异的发展过程中,人们研究的许多问题用一个自变量的函数来描述已经显得不够了,不少问题有多个变量的函数来描述。

比如,从物理角度来说,物理量有不同的性质,温度、密度等是用数值来描述的叫做纯量;速度、电场的引力等,不仅在数值上有不同,而且还具有方向,这些量叫做向量;物体在一点上的张力状态的描述出的量叫做张量,等等。

这些量不仅和时间有关系,而且和空间坐标也有联系,这就要用多个变量的函数来表示。

应该指出,对于所有可能的物理现象用某些多个变量的函数表示,只能是理想化的,如介质的密度,实际上“在一点”的密度是不存在的。

而我们把在一点的密度看作是物质的质量和体积的比当体积无限缩小的时候的极限,这就是理想化的。

介质的温度也是这样。

这样就产生了研究某些物理现象的理想了的多个变量的函数方程,这种方程就是偏微分方程。

微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。

这些著作当时没有引起多大注意。

1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。

这样就由对弦振动的研究开创了偏微分方程这门学科。

和欧拉同时代的瑞士数学家丹尼尔·贝努利也研究了数学物理方面的问题,提出了解弹性系振动问题的一般方法,对偏微分方程的发展起了比较大的影响。

拉格朗日也讨论了一阶偏微分方程,丰富了这门学科的内容。

偏微分方程得到迅速发展是在十九世纪,那时候,数学物理问题的研究繁荣起来了,许多数学家都对数学物理问题的解决做出了贡献。

这里应该提一提法国数学家傅立叶,他年轻的时候就是一个出色的数学学者。

在从事热流动的研究中,写出了《热的解析理论》,在文章中他提出了三维空间的热方程,也就是一种偏微分方程。

他的研究对偏微分方程的发展的影响是很大的。

偏微分方程的内容

偏微分方程是什么样的?

它包括哪些内容?

这里我们可从一个例子的研究加以介绍。

弦振动是一种机械运动,当然机械运动的基本定律是质点力学的F=ma,但是弦并不是质点,所以质点力学的定律并不适用在弦振动的研究上。

然而,如果我们把弦细细地分成若干个极小极小的小段,每一小段抽象地看作是一个质点,这样我们就可以应用质点力学的基本定律了。

弦是指又细又长的弹性物质,比如弦乐器所用的弦就是细长的、柔软的、带有弹性的。

演奏的时候,弦总是绷紧着具有一种张力,这种张力大于弦的重量几万倍。

当演奏的人用薄片拨动或者用弓在弦上拉动,虽然只因其所接触的一段弦振动,但是由于张力的作用,传播到使整个弦振动起来。

用微分的方法分析可得到弦上一点的位移是这一点所在的位置和时间为自变量的偏微分方程。

偏方程又很多种类型,一般包括椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程。

上述的例子是弦振动方程,它属于数学物理方程中的波动方程,也就是双曲型偏微分方程。

偏微分方程的解一般有无穷多个,但是解决具体的物理问题的时候,必须从中选取所需要的解,因此,还必须知道附加条件。

因为偏微分方程是同一类现象的共同规律的表示式,仅仅知道这种共同规律还不足以掌握和了解具体问题的特殊性,所以就物理现象来说,各个具体问题的特殊性就在于研究对象所处的特定条件,就是初始条件和边界条件。

拿上面所举的弦振动的例子来说,对于同样的弦的弦乐器,如果一种是以薄片拨动弦,另一种是以弓在弦上拉动,那么它们发出的声音是不同的。

原因就是由于“拨动”或“拉动”的那个“初始”时刻的振动情况不同,因此产生后来的振动情况也就不同。

天文学中也有类似情况,如果要通过计算预言天体的运动,必须要知道这些天体的质量,同时除了牛顿定律的一般公式外,还必须知道我们所研究的天体系统的初始状态,就是在某个起始时间,这些天体的分布以及它们的速度。

在解决任何数学物理方程的时候,总会有类似的附加条件。

就弦振动来说,弦振动方程只表示弦的内点的力学规律,对弦的端点就不成立,所以在弦的两端必须给出边界条件,也就是考虑研究对象所处的边界上的物理状况。

边界条件也叫做边值问题。

当然,客观实际中也还是有“没有初始条件的问题”,如定场问题(静电场、稳定浓度分布、稳定温度分布等),也有“没有边界条件的问题”,如着重研究不*近两端的那段弦,就抽象的成为无边界的弦了。

在数学上,初始条件和边界条件叫做定解条件。

偏微分方程本身是表达同一类物理现象的共性,是作为解决问题的依据;定解条件却反映出具体问题的个性,它提出了问题的具体情况。

方程和定解条件合而为一体,就叫做定解问题。

求偏微分方程的定解问题可以先求出它的通解,然后再用定解条件确定出函数。

但是一般来说,在实际中通解是不容易求出的,用定解条件确定函数更是比较困难的。

偏微分方程的解法还可以用分离系数法,也叫做傅立叶级数;还可以用分离变数法,也叫做傅立叶变换或傅立叶积分。

分离系数法可以求解有界空间中的定解问题,分离变数法可以求解无界空间的定解问题;也可以用拉普拉斯变换法去求解一维空间的数学物理方程的定解。

对方程实行拉普拉斯变换可以转化成常微分方程,而且初始条件也一并考虑到,解出常微分方程后进行反演就可以了。

应该指出,偏微分方程的定解虽然有以上各种解法,但是我们不能忽视由于某些原因有许多定解问题是不能严格解出的,只可以用近似方法求出满足实际需要的近似程度的近似解。

常用的方法有变分法和有限差分法。

变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。

虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,在数学上是拉普拉斯方程的边值问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。

随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。

从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。

从这个角度说,偏微分方程变成了数学的中心。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 自我管理与提升

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1