自动控制原理(中英文对照李道根)习题2题解.pdf
《自动控制原理(中英文对照李道根)习题2题解.pdf》由会员分享,可在线阅读,更多相关《自动控制原理(中英文对照李道根)习题2题解.pdf(12页珍藏版)》请在冰豆网上搜索。
Solutions1SolutionsP2.1Thefollowingdifferentialequationsrepresentlineartime-invariantsystems,where)(trdenotestheinputand)(tcdenotestheoutput.Findthetransferfunctionofeachofthesystems.(a)()(6d)(d11d)(d6d)(d2233trtcttcttcttc(b)(d)(d2)(d)(d4d)(d3d)(d2233trttrtcttcttcttcSolution:
(a)TakingLaplacetransform,assumingzeroinitialconditions,wehave)()(6)(11)(6)(23sRsCssCsCssCsHence,thetransferfunctionis61161)()(23ssssRsC(b)Inasameway,wehave)()
(2)(6)(4)(3)(23sRssRsCssCsCssCs14312)()(23sssssRsCP2.2Amass-spring-dampersystemisshowninFig.P2.2.Determinethedifferentialequationbetweentheinputforcefandtheoutputdisplacementx.Solution:
UsingNewtonssecondlawyields22d)(dd)(d)()(ttxMttxBtKxtfRearranginginanormalizedformgets)
(1)(d)(dd)(d22tfMtxMKttxMBttxP2.3Determinethetransferfunction)()(2sFsXforthesystemshowninFig.P2.3.Bothmassesslideonafrictionlesssurface,andMNK/1.Solution:
UsingNewtonssecondlawforbothmassesyieldsfxxKtxxM)(d)(d2122121222221dd)(txMxxKTakingLaplacetransformyields)()()()()(212121sFsXsXKsXsXsMSolutions2)()()(22221sXsMsXsXKEliminatingtheintermediatevariablesresultsin)2
(1)()(22sssFsXP2.4AthermistorhasaresponsetotemperaturerepresentedbyTeRR1.00whereRisresistance,TistemperatureindegreesCelsius,and100000R.FindthelinearizedmodelforthethermistoroperatingatCT20andforasmallrangeofvariationoftemperature.Solution:
ExpandingtheexpressionofthermistorintoTaylorsseriesintheneighborhoodofspecifiedtemperature,wehaveTTtRTRtRTT0d)(d)()(0,CT200where3.13510001.0d)(d21.0000eeRTtRTTTTT.Hence,thelinearizedmodelforthethermistor,atCT20,isT.R3135P2.5Obtainthetransferfunctions,)()(sVsVio,forthepassivenetworksshowninFig.P2.5.Solution:
UsingKirchhoffslaws,wehave(a)1)(111)()(212212CsRRCsRCsRRCsRsVsVio(b)212112122112111)()(RRCsRRCsRRRRRCsRCsRRsVsVio(c)()()1()()()()()2()()
(1)
(1)
(1)
(1)(2112112ssVRCsVsRCsVsVsVsVsRCssVCsVsCRsVRsVRsVRsVsCRioAioAioAioAovCiv1R2R(a)ovCiv1R2R(b)ov1CivRR(c)2CFigureP2.5.Solutions31)2(12)()(21221212212sCCRsCCRsRCsCCRsVsVioP2.6Obtainthetransferfunctions,)()(sVsVio,fortheactivenetworksshowninFig.P2.6.Solution:
UsingKirchhoffslaws,wehave(a)00100001)1()1()1()()(RCsRRsCRsCRRsVsVio(b)sCRsCRRsCRsCRsCRsVsVio10001000011)1()1()1()1()()(c)11)()()
(1)()
(1)
(2)
(1)(211221221A222111sCRsCRRRsVsVsVRRsVsVRsVsCRsVRsVsCRioBoBiA(d)30313221232110)()()
(1)(111)
(1)(1ZZZZZZZZsVsVsVZsVZZZsVZsVZiooAAiKK0R1R0CovovivivKovivK0R1R0Coviv1C(a)(b)(c)(d)0C0R0R0R1R1Z1R2Z3Z1CFigureP2.6.Solutions4P2.7Drawablockdiagramshowingallthevariablesforthesystemdescribedbythefollowingsetofdifferentialequations.)()()()()()()()()()()()()()()()(5022453452311211txKtctctnKtxtxtxxTtxtxtxtxKtxtntctrtxwhere)(tristheinput,)(tcistheoutput,)(1tnand)(2tnaretwodisturbances,0K,1K,2K,andTareconstants.Solution:
TakingLaplacetransformwithzeroinitialconditionsandwritingtheresultinacause-and-effectformyields)()1()()()()()
(1)()()()()()()()()()()()()()()()()()()()()()()()()()()(502245345231121150222453452311211sxssKsCsNKsXsXsXTssXsXsXsXsXKsXsNsCsRsXsxKssCsCssNKsXsXsXsTsXsXsXsXsXKsXsNsCsRsXRearrangingthevariables)(sR,)(1sX,)(2sX,)(3sX,)(4sX,)(5sXand)(sCfromlefttorightinorder,wehavetheblockdiagramasshown.P2.8Asystemisdescribedbythefollowingsetofequations:
)()()()()()()()()()()()()()()()()()()()(3452333612287111sXsGsCsCsGsXsGsXsXsGsXsGsXsCsGsGsGsRsGsXDrawtheblockdiagramshowingallthevariablesforthissystemandfindthetransferfunctionfor)()(sRsC.Solution:
TakingLaplacetransformwithzeroinitialconditionsandwritingtheresultinacause-and-effectform,itisnotdifficulttogettheblockdiagramasshown.R1GTs1)1(0ssK2KC2N1N1X2X3X4X5XR1GC1X2X3X2G6G3G4G5G7G8GSolutions51G2G3G4G)(2sR)(1sC)(1sR)(2sCFigureP2.9.P2.9AsystemwithtwoinputsandtwooutputsisshowninFig.P2.9.Determinethetransferfunctions)()(11sRsC,)()(21sRsC,)()(12sRsC,and)()(22sRsC.Writetheexpressionsof)(1sCand)(2sC.Solution:
Thetransferfunctionisadescriptionofoneinputtooneoutput.Letting0)(2sR,weget)()()()
(1)()()(4321111sGsGsGsGsGsRsC)()()()
(1)()()()()(432132112sGsGsGsGsGsGsGsRsCLetting0)(1sR,weget)()()()
(1)()()()()(432114321sGsGsGsGsGsGsGsRsC)()()()
(1)()()(4321322sGsGsGsGsGsRsCTheexpressionsof)(1sCand)(2sCaregivenby)()()()()
(1)()()()()()()()
(1)()(243214311432111sRsGsGsGsGsGsGsGsRsGsGsGsGsGsC)()()()
(1)()()()()()(4321243111sGsGsGsGsRsGsGsGsRsG)()()()
(1)()()()()()()(43212313212sGsGsGsGsRsGsRsGsGsGsCrespectively.P2.10Byblockdiagramdeductionfindthetransferfunctionsoffollowingsystems.RGHCR1G2GHR1G2G3G3H2H1HC(d)(b)(a)CR1G2GHC(c)FigureP2.10.Solutions6Solution:
(a)HGHHGHGHGsRsC1)1(11)()(b)HGGGsRsC22111)()()(HGGG2211(c)HGGGsRsC12111)()()(HGGG1211(d)22331132131233321113332111)1)(1(11111)()(HGHGHGGGGGGHHGGGHGGHGGGHGGsRsC31313322113211HHGGHGHGHGGGGP2.11Forthefollowingsystems:
Derivethetransferfunctionsfor)()(sRsCand)()(sNsCbyblockdiagramdeduction.)(sR1G2G3GH)(sC)(sN1G2G3G2H1H(b)(sN)(sC)(sR(a)FigureP2.11.RGHCRGHH1CR1G2GHCR1G2GHG2CR1G2GHCR1G2GHG1CR1G2G3G3H2H1HCR1G2G3G3H2H1HC31G11GSolutions7Solution:
(a)HGGGGsRsC11)()(2121HGGGGsRsC111)()(2132(b)221212112212211111)()(HGHGGGGHHGGGHGGGsRsC22121312212122311)1(111)1()()(HGHGGGGGHGHGGHGGGGsRsC)(sR1G2G3GH)(sC)(sN)(sR1G2GH1)(sC)(sR1G2G3GH)(sC)(sN1G2G3GH1)(sC)(sN32GG)1(21HGG)(sN)(sC1G2G3G2H1H)(sN)(sC)(sR1G2G2H1H)(sC)(sR1G2G3G2H1H)(sN)(sC)(sR3G2G2H1H)(sC)(sN1G13GG2221HGG11HG)(sC)(sNSolutions8P2.12Byblockdiagramdeductionfindthetransferfunctionsofthefollowingsystems.Solution:
(a)22112312212211221131)(111)1()()(HGGHGGGGHHGGGHGGGGGsRsC(b)1432123213324321142433232143323211111)()(HGGGGHGGGHGGGGGGhGHGHGGGGGGHGGGGGsRsC)(sR1G2G3G1H)(sC(b)(a)2H2H1H)(sR1G2G3H)(sC3G4G2H1H)(sR1G2G3H)(sC(c)(d)2H1H)(sR1G2G3H)(sC3G4GFigureP2.12.)(sR1G2G3G1H)(sC2H)(sR1G2G13GG1H)(sC2H2H1H)(sR1G2G3H)(sC3G4G42GH1H)(sR1G32GG3H)(sC4GSolutions9)(sRK)(sH)(sC)(sE)5(2ssFigureP2.13.(c)2111211211111)1(11)(HHHGHHGHHHGGsGe322111211221112113221)1(11)1
(1)()(HGHHHGHHGGHHHGHHGHGGGGsRsCee32121321211121211)1(HHHGGHGGHHHGHHGG(d)41241134343213434321111)()(GGHGGHHGGGGGGHGGGGGGsRsC1432123234343211HGGGGHGGHGGGGGGP2.13Forthesystemshowninthefigure,determineK,and)(sHifitisrequiredthatthefeedforwardtransferfunctionofthesystem)20)(5()10(100)()(sssssEsCSolution:
Thereisarelationforthesystem,mathematically,)()()()()()(sEsRsRsCsEsCCalculatingKsHssKssKsssHssKsRsC2)
(2)5
(2)5
(2)5()(21)5
(2)()(2H1H)(sR1G2G3H)(sC2111HHH)(sR1G2G3H)(sCeG2H1H)(sR1G2G3H)(sC3G4G2H1H)(sR11G21GG3H)(sC43GG41G4121GGHH)(sR21GG)(sC343431HGGGGSolutions10KsHsssHssssKsssHsssHsRsE2)
(2)5()
(2)5()5
(2)5()(21)5()(21)()(weget)20)(5()10(100)
(2)5
(2)()(sssssHssKsEsCHence,thefinalresultis50K,10)5(5)(ssssHP2.14ArethetwosystemsshowninFig.?
P2.14(a)and(b)equivalent?
Explain.Solution:
Thetwosystemsarenotequivalent,becausethethreeloopsin(a)arenontouching,however,theloopsadandbe,beandcfin(b)aretouching.Infact,usingMasonsformula,wehaveadbecfbecfadcfadbecfbeadabcsXsY1)()(11adcfcfbeadabcsXsY1)()(22P2.15Findtheoveralltransferfunctionsforthefollowingsystems.Solution:
Usingmasonsformula,wehave(a)cgbchcgbchfabcdesRsC1)1()()(1x1yabcde11fabcfde112x2yFigureP2.14.)(sR)(sCabcde11(a)fgh)(sR)(sCabcde1(b)fgh)(sR)(sCabcde11(c)fgh)(sR)(sCabcde1(d)fgh1FigureP2.15.Solutions11(b)afchefghchbgafbgedabcdsRsC1)1()()(c)afchchbgafchbgeabcdsRsC1)1()()(d)aedfchfehgbgaedabcdfaeabcsRsC1)1()()(P2.16Findthetransferfunctionforthemulti-loopcrossingsystemshowninFig.P.2.16.Solution:
Therearefiveloopsandfourforwardpaths.Hencewehave212121211GGGGGGGG11Gp,1122Gp,12213GGp,13213GGp,1321212121312)()(GGGGGGGGsRsCP2.17DrawequivalentsignalflowgraphsfortheblockdiagramsinFig.P.2.12.FindthetransferfunctionsbyuseofMasonsformula.Solution:
(a)2211222211)()(HGGHGGGGGsRsC(b)2211222211)()(HGGHGGGGGsRsC)(sR1G2G)(sCFigureP2.16.)(sR1G2G3G1H)(sC2H1RC3G1G2G112H1H1R3G1G2G12H1H2H1H)(sR1G2G3H)(sC3G4GC14G3HSolutions12(c)32121321211121211)1()()(HHHGGHGGHHHGHHGGsRsC(d)1432134323243211)()(HGGGGHGGHGGGGGGsRsC11R1G2G12H1HC13H2H1H)(sR1G2G3H)(sC13G4G1R1G2G2H1HC3H12H1H)(sR1G2G3H)(sC3G4G