ImageVerifierCode 换一换
格式:PDF , 页数:12 ,大小:172.94KB ,
资源ID:25201740      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/25201740.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(自动控制原理(中英文对照李道根)习题2题解.pdf)为本站会员(zf)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

自动控制原理(中英文对照李道根)习题2题解.pdf

1、Solutions1SolutionsP2.1 The following differential equations represent linear time-invariant systems,where)(trdenotes the input and)(tcdenotes the output.Find the transfer function of each of the systems.(a)()(6d)(d11d)(d6d)(d2233trtcttcttcttc(b)(d)(d2)(d)(d4d)(d3d)(d2233trttrtcttcttcttcSolution:(a)

2、Taking Laplace transform,assuming zero initial conditions,we have)()(6)(11)(6)(23sRsCssCsCssCsHence,the transfer function is61161)()(23ssssRsC(b)In a same way,we have)()(2)(6)(4)(3)(23sRssRsCssCsCssCs14312)()(23sssssRsCP2.2A mass-spring-damper system is shown in Fig.P2.2.Determine the differential e

3、quation between the input force fand the output displacement x.Solution:Using Newtons second law yields22d)(dd)(d)()(ttxMttxBtKxtfRearranging in a normalized form gets)(1)(d)(dd)(d22tfMtxMKttxMBttxP2.3 Determine the transfer function)()(2sFsXfor the system shown in Fig.P2.3.Both masses slide on a fr

4、ictionless surface,and MNK/1.Solution:Using Newtons second law for both masses yieldsfxxKtxxM)(d)(d2122121222221dd)(txMxxKTaking Laplace transform yields)()()()()(212121sFsXsXKsXsXsMSolutions2)()()(22221sXsMsXsXKEliminating the intermediate variables results in)2(1)()(22sssFsXP2.4A thermistor has a

5、response to temperature represented byTeRR1.00where Ris resistance,Tis temperature in degrees Celsius,and 100000R.Find the linearized model for the thermistor operating at CT20and for a small range of variation of temperature.Solution:Expanding the expression of thermistor into Taylors series in the

6、 neighborhood of specified temperature,we haveTTtRTRtRTT0d)(d)()(0,CT200where 3.13510001.0d)(d21.0000eeRTtRTTTTT.Hence,the linearized model for the thermistor,at CT20,isT.R3135P2.5 Obtain the transfer functions,)()(sVsVio,for the passive networks shown in Fig.P2.5.Solution:Using Kirchhoffs laws,we h

7、ave(a)1)(111)()(212212CsRRCsRCsRRCsRsVsVio(b)212112122112111)()(RRCsRRCsRRRRRCsRCsRRsVsVio(c)()()1()()()()()2()()(1)(1)(1)(1)(2112112ssVRCsVsRCsVsVsVsVsRCssVCsVsCRsVRsVRsVRsVsCRioAioAioAioAovCiv1R2R(a)ovCiv1R2R(b)ov1CivRR(c)2CFigure P2.5.Solutions31)2(12)()(21221212212sCCRsCCRsRCsCCRsVsVioP2.6 Obtai

8、n the transfer functions,)()(sVsVio,for the active networks shown in Fig.P2.6.Solution:Using Kirchhoffs laws,we have(a)00100001)1()1()1()()(RCsRRsCRsCRRsVsVio(b)sCRsCRRsCRsCRsCRsVsVio10001000011)1()1()1()1()()(c)11)()()(1)()(1)(2)(1)(211221221A222111sCRsCRRRsVsVsVRRsVsVRsVsCRsVRsVsCRioBoBiA(d)303132

9、21232110)()()(1)(111)(1)(1ZZZZZZZZsVsVsVZsVZZZsVZsVZiooAAiKK0R1R0CovovivivKovivK0R1R0Coviv1C(a)(b)(c)(d)0C0R0R0R1R1Z1R2Z3Z1CFigure P2.6.Solutions4P2.7 Draw a block diagram showing all the variables for the system described by the following set of differential equations.)()()()()()()()()()()()()()()(

10、)(5022453452311211txKtctctnKtxtxtxxTtxtxtxtxKtxtntctrtx where)(tris the input,)(tcis the output,)(1tnand)(2tnare two disturbances,0K,1K,2K,and Tare constants.Solution:Taking Laplace transform with zero initial conditions and writing the result in a cause-and-effect form yields)()1()()()()()(1)()()()

11、()()()()()()()()()()()()()()()()()()()()()()()(502245345231121150222453452311211sxssKsCsNKsXsXsXTssXsXsXsXsXKsXsNsCsRsXsxKssCsCssNKsXsXsXsTsXsXsXsXsXKsXsNsCsRsXRearranging the variables)(sR,)(1sX,)(2sX,)(3sX,)(4sX,)(5sXand)(sCfrom left to right in order,we have the block diagram as shown.P2.8 A syst

12、em is described by the following set of equations:)()()()()()()()()()()()()()()()()()()()(3452333612287111sXsGsCsCsGsXsGsXsXsGsXsGsXsCsGsGsGsRsGsXDraw the block diagram showing all the variables for this system and find the transfer function for)()(sRsC.Solution:Taking Laplace transform with zero in

13、itial conditions and writing the result in a cause-and-effect form,it is not difficult to get the block diagram as shown.R1GTs1)1(0ssK2KC2N1N1X2X3X4X5XR1GC1X2X3X2G6G3G4G5G7G8GSolutions51G2G3G4G)(2sR)(1sC)(1sR)(2sCFigure P 2.9.P2.9 A system with two inputs and two outputs is shown in Fig.P2.9.Determi

14、ne the transfer functions)()(11sRsC,)()(21sRsC,)()(12sRsC,and)()(22sRsC.Write the expressions of)(1sCand)(2sC.Solution:The transfer function is a description of one input to one output.Letting 0)(2sR,we get)()()()(1)()()(4321111sGsGsGsGsGsRsC)()()()(1)()()()()(432132112sGsGsGsGsGsGsGsRsCLetting 0)(1

15、sR,we get)()()()(1)()()()()(432114321sGsGsGsGsGsGsGsRsC)()()()(1)()()(4321322sGsGsGsGsGsRsCThe expressions of)(1sCand)(2sCare given by)()()()()(1)()()()()()()()(1)()(243214311432111sRsGsGsGsGsGsGsGsRsGsGsGsGsGsC)()()()(1)()()()()()(4321243111sGsGsGsGsRsGsGsGsRsG)()()()(1)()()()()()()(43212313212sGsG

16、sGsGsRsGsRsGsGsGsCrespectively.P2.10 By block diagram deduction find the transfer functions of following systems.RGHCR1G2GHR1G2G3G3H2H1HC(d)(b)(a)CR1G2GHC(c)FigureP2.10.Solutions6Solution:(a)HGHHGHGHGsRsC1)1(11)()(b)HGGGsRsC22111)()()(HGGG2211(c)HGGGsRsC12111)()()(HGGG1211(d)223311321312333211133321

17、11)1)(1(11111)()(HGHGHGGGGGGHHGGGHGGHGGGHGGsRsC31313322113211HHGGHGHGHGGGGP2.11 For the following systems:Derive the transfer functions for)()(sRsCand)()(sNsCby block diagram deduction.)(sR1G2G3GH)(sC)(sN1G2G3G2H1H(b)(sN)(sC)(sR(a)FigureP2.11.RGHCRGHH1CR1G2GHCR1G2GHG2CR1G2GHCR1G2GHG1CR1G2G3G3H2H1HCR

18、1G2G3G3H2H1HC31 G11 GSolutions7Solution:(a)HGGGGsRsC11)()(2121HGGGGsRsC111)()(2132(b)221212112212211111)()(HGHGGGGHHGGGHGGGsRsC22121312212122311)1(111)1()()(HGHGGGGGHGHGGHGGGGsRsC)(sR1G2G3GH)(sC)(sN)(sR1G2GH1)(sC)(sR1G2G3GH)(sC)(sN1G2G3GH1)(sC)(sN32GG)1(21HGG)(sN)(sC1G2G3G2H1H)(sN)(sC)(sR1G2G2H1H)(s

19、C)(sR1G2G3G2H1H)(sN)(sC)(sR3G2G2H1H)(sC)(sN1G13GG2221HGG11HG)(sC)(sNSolutions8P2.12By block diagram deduction find the transfer functions of the following systems.Solution:(a)22112312212211221131)(111)1()()(HGGHGGGGHHGGGHGGGGGsRsC(b)1432123213324321142433232143323211111)()(HGGGGHGGGHGGGGGGhGHGHGGGGG

20、GHGGGGGsRsC)(sR1G2G3G1H)(sC(b)(a)2H2H1H)(sR1G2G3H)(sC3G4G2H1H)(sR1G2G3H)(sC(c)(d)2H1H)(sR1G2G3H)(sC3G4GFigure P2.12.)(sR1G2G3G1H)(sC2H)(sR1G2G13GG1H)(sC2H2H1H)(sR1G2G3H)(sC3G4G42GH1H)(sR1G32GG3H)(sC4GSolutions9)(sRK)(sH)(sC)(sE)5(2ssFigureP2.13.(c)2111211211111)1(11)(HHHGHHGHHHGGsGe32211121122111211

21、3221)1(11)1(1)()(HGHHHGHHGGHHHGHHGHGGGGsRsCee32121321211121211)1(HHHGGHGGHHHGHHGG(d)41241134343213434321111)()(GGHGGHHGGGGGGHGGGGGGsRsC1432123234343211HGGGGHGGHGGGGGGP2.13 For the system shown in the figure,determine K,and)(sHif it is required that the feedforward transfer function of the system)20)

22、(5()10(100)()(sssssEsCSolution:There is a relation for the system,mathematically,)()()()()()(sEsRsRsCsEsCCalculatingKsHssKssKsssHssKsRsC2)(2)5(2)5(2)5()(21)5(2)()(2H1H)(sR1G2G3H)(sC2111HHH)(sR1G2G3H)(sCeG2H1H)(sR1G2G3H)(sC3G4G2H1H)(sR11 G21GG3H)(sC43GG41 G4121GGHH)(sR21GG)(sC343431HGGGGSolutions10Ks

23、HsssHssssKsssHsssHsRsE2)(2)5()(2)5()5(2)5()(21)5()(21)()(we get)20)(5()10(100)(2)5(2)()(sssssHssKsEsCHence,the final result is50K,10)5(5)(ssssHP2.14 Are the two systems shown in Fig.?P2.14(a)and(b)equivalent?Explain.Solution:The two systems are not equivalent,because the three loops in(a)are nontouc

24、hing,however,the loops adand be,beand cfin(b)are touching.In fact,using Masons formula,we haveadbecfbecfadcfadbecfbeadabcsXsY1)()(11adcfcfbeadabcsXsY1)()(22P2.15 Find the overall transfer functions for the following systems.Solution:Using masons formula,we have(a)cgbchcgbchfabcdesRsC1)1()()(1x1yabcd

25、e11fabcfde112x2yFigureP2.14.)(sR)(sCabcde11(a)fgh)(sR)(sCabcde1(b)fgh)(sR)(sCabcde11(c)fgh)(sR)(sCabcde1(d)fgh1Figure P2.15.Solutions11(b)afchefghchbgafbgedabcdsRsC1)1()()(c)afchchbgafchbgeabcdsRsC1)1()()(d)aedfchfehgbgaedabcdfaeabcsRsC1)1()()(P2.16 Find the transfer function for the multi-loop cros

26、sing system shown in Fig.P.2.16.Solution:There are five loops and four forward paths.Hence we have212121211GGGGGGGG11Gp,1122Gp,12213GGp,13213GGp,1321212121312)()(GGGGGGGGsRsCP2.17 Draw equivalent signal flow graphs for the block diagrams in Fig.P.2.12.Find the transfer functions by use of Masons for

27、mula.Solution:(a)2211222211)()(HGGHGGGGGsRsC(b)2211222211)()(HGGHGGGGGsRsC)(sR1G2G)(sCFigure P2.16.)(sR1G2G3G1H)(sC2H1RC3G1G2G112H1H1R3G1G2G12H1H2H1H)(sR1G2G3H)(sC3G4GC14G3HSolutions12(c)32121321211121211)1()()(HHHGGHGGHHHGHHGGsRsC(d)1432134323243211)()(HGGGGHGGHGGGGGGsRsC11R1G2G12H1HC13H2H1H)(sR1G2G3H)(sC13G4G1R1G2G2H1HC3H12H1H)(sR1G2G3H)(sC3G4G

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1