单片机课程设计 转速测量系统.docx

上传人:b****4 文档编号:24534664 上传时间:2023-05-28 格式:DOCX 页数:35 大小:468.55KB
下载 相关 举报
单片机课程设计 转速测量系统.docx_第1页
第1页 / 共35页
单片机课程设计 转速测量系统.docx_第2页
第2页 / 共35页
单片机课程设计 转速测量系统.docx_第3页
第3页 / 共35页
单片机课程设计 转速测量系统.docx_第4页
第4页 / 共35页
单片机课程设计 转速测量系统.docx_第5页
第5页 / 共35页
点击查看更多>>
下载资源
资源描述

单片机课程设计 转速测量系统.docx

《单片机课程设计 转速测量系统.docx》由会员分享,可在线阅读,更多相关《单片机课程设计 转速测量系统.docx(35页珍藏版)》请在冰豆网上搜索。

单片机课程设计 转速测量系统.docx

单片机课程设计转速测量系统

浙江理工大学

 

《单片机系统设计及应用实验》

设计报告

 

题目:

转速测量系统设计

专业:

10机械电子工程

班级:

10机电

(1)班

姓名:

学号:

B10300527

指导教师:

袁嫣红

 

机械与自动控制学院

2013年7月7日

摘要

51单片机是对目前所有兼容Intel8031指令系统的单片机的统称。

该系列单片机的始祖是Intel的8031单片机,后来随着Flashrom技术的发展,8031单片机取得了长足的进展,成为目前应用最广泛的8位单片机之一,其代表型号是ATMEL公司的AT89系列,它广泛应用于工业测控系统之中。

目前很多公司都有51系列的兼容机型推出,在目前乃至今后很长的一段时间内将占有大量市场。

51单片机是基础入门的一个单片机,还是应用最广泛的一种。

需要注意的是52系列的单片机一般不具备自编程能力。

本次课程设计是对单片机系统设计及应用实验是机械电子工程专业学生面向应用的设计训练,是单片机课程理论教学后进行的一个实践教学环节。

学习基于51系列单片机的嵌入式系统的软硬件设计,包括:

1.完成一个简单控制系统的设计过程训练,能从系统的要求出发,制订设计方案,合理选择芯片和元件;并完成最终的设计与调试。

2.掌握一种电路原理图和硬制板图绘制软件的应用方法;

3.学习汇编语言在单片机程序设计的应用

4.掌握单片机系统的调试方法

通过本次课程设计鼓励学生自主学习及研究性学习,培养学生创新意识,使学生在导师的指导下,进行探索性学习过程,这样学生的探索和研究欲望将会得到激发;同时注意学生团队合作精神的培养和锻炼。

 

概述

课程设计大致经历了以下的设计过程:

1、确立课程设计的题目,确定要实现的目标和具体的主要功能

2、查阅相关资料,就行系统硬件电路的设计,绘制出原理图

3、结合已经绘制好的原理图,进行程序的编写和调试

4、硬件和软件都准备好以后进行最后的调试工作,就行修改,最终确定结果。

设计结果:

通过最终的调试,完成了预期的目标,可以对轴类仪器进行转速的测定工作,并显示在四位LED数码管上,精度达到了要求,设计圆满完成了任务。

 

目录

1、设计目标及主要功能………………………………………………………………1

1.1设计目标……………………………………………………………………1

1.2功能…………………………………………………………………………1

2、硬件电路设计及描述………………………………………………………………2

2.1单片机最小系统和晶振电路………………………………………………6

2.1.1单片机最小系统……………………………………………………6

2.1.2晶振电路……………………………………………………………7

2.2转速信号测量电路…………………………………………………………8

2.2.1转速信号采集电路…………………………………………………6

2.2.2转速信号处理电路………………………………………………10

2.3数码管显示电路…………………………………………………………13

3、软件设计流程及描述……………………………………………………………14

3.1定时/计数器T0…………………………………………………………14

3.2定时/计数器T1…………………………………………………………15

3.3定时/计数器的方式控制字………………………………………………15

3.4定时/计数控制寄存器TCON………………………………………………15

3.5定时器T1中断处理………………………………………………………16

3.6计数值的处理程序………………………………………………………17

3.7数码管的显示程序………………………………………………………17

3.8系统流程…………………………………………………………………17

4、源程序代码………………………………………………………………………18

5、调试结果…………………………………………………………………………22

6、课程设计总结……………………………………………………………………23

7、参考文献…………………………………………………………………………23

 

1概述

1.1设计目标

以单片机为核心设计一个转速测定及数据显示控制系统。

要求对转速范围在0~3500r/min的直流调速电动机或交流变频调速电动机及其它轴类装置转速进行测量并显示,转速数据显示精度要求达到转速个位数,用4位LED数码管显示速度。

1.2主要功能

1、测量轴类装置的转速,并通过数码管显示实时转速。

2、系统包含复位电路,在系统进入不正常状态时复位电路。

2硬件电路设计及描述

整个测量系统的组成框图如图3.3所示。

从图中可见,转子由一直流调速电机驱动,可实现大转速范围内的无级调速。

转速信号由光电传感器拾取,使用时应先在转子上做好光电标记,具体办法可以是:

将转子表面擦干净后用黑漆(或黑色胶布)全部涂黑,再将一块反光材料贴在其上作为光电标记,然后将光电传感器(光电头)固定在正对光电标记的某一适当距离处。

光电头采用低功耗高亮度LED,光源为高可靠性可见红光,无论黑夜还是白天,或是背景光强有大范围改变都不影响接收效果。

光电头包含有前置电路,输出0—5V的脉冲信号。

接到单片机89C51的相应管脚上,通过89C51内部定时/计时器T0、T1及相应的程序设计,组成一个数字式转速测量系统。

AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—FalshProgrammableandErasableReadOnlyMemory)的低电压,高性能CMOS8位微处理器,俗称单片机。

该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

图4.5是常用的一种单片机,型号为AT89C51,它将计算机的功能都集成到这个芯片内部去了,就这么一个小小的芯片就能构成一台小型的电脑,因此叫做单片机。

图4.5

它有40个管脚,分成两排,每一排各有20个脚,其中左下角标有箭头的为第1脚,然后按逆时针方向依次为第2脚、第3脚……第40脚。

在40个管脚中,其中有32个脚可用于各种控制,比如控制小灯的亮与灭、控制电机的正转与反转、控制电梯的升与降等,这32个脚叫做单片机的“端口”,在单片机技术中,每个端口都有一个特定的名字,比如第一脚的那个端口叫做“P1.0”。

AT89C51单片机的功能:

1.主要特性:

◆与MCS-51兼容

◆4K字节可编程闪烁存储器

◆寿命:

1000写/擦循环

◆数据保留时间:

10年

◆全静态工作:

0Hz-24Hz

◆三级程序存储器锁定

◆128*8位内部RAM

◆32可编程I/O线

◆两个16位定时器/计数器

◆5个中断源

◆可编程串行通道

◆低功耗的闲置和掉电模式

◆片内振荡器和时钟电路

2.管脚说明(图4.7):

图4.7

●VCC:

供电电压,

●GND:

接地。

●P0口:

P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

●P1口:

P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH编程和校验时,P1口作为第八位地址接收。

●P2口:

P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

●P3口:

P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89C51的一些特殊功能口。

P3口管脚备选功能:

●P3.0RXD(串行输入口)

●P3.1TXD(串行输出口)

●P3.2/INT0(外部中断0)

●P3.3/INT1(外部中断1)

●P3.4T0(记时器0外部输入)

●P3.5T1(记时器1外部输入)

●P3.6/WR(外部数据存储器写选通)

●P3.7/RD(外部数据存储器读选通)

●P3口同时为闪烁编程和编程校验接收一些控制信号。

● RST:

复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

●ALE/PROG:

当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:

每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

●PSEN:

外部程序存储器的选通信号。

在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

●EA/VPP:

当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。

在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

●XTAL1:

反向振荡放大器的输入及内部时钟工作电路的输入。

●XTAL2:

来自反向振荡器的输出。

3.振荡器特性:

  XTAL1和XTAL2分别为反向放大器的输入和输出。

该反向放大器可以配置为片内振荡器。

石晶振荡和陶瓷振荡均可采用。

如采用外部时钟源驱动器件,XTAL2应不接。

有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。

4.芯片擦除:

  整个PEROM阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ALE管脚处于低电平10ms来完成。

在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。

  此外,AT89C51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。

在闲置模式下,CPU停止工作。

但RAM,定时器,计数器,串口和中断系统仍在工作。

在掉电模式下,保存RAM的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。

在设计中采用光电传感器采集信号,这种传感器是把旋转轴的转速变为相应频率的脉冲,然后用测量电路测出频率,由频率值就可知道所侧转素值。

这种测量方法具有传感器结构简单、可靠、测量精度高的特点。

是目前常用的一种测量转速的方法。

从光源发出的光通过测速齿盘上的齿槽照射到光电元件上,使光电元件感光。

(1)、光电传感器是应用非常广泛的一种器件,有各种各样的形式,如透射式、反射式等,基本的原理就是当发射管光照射到接收管时,接收管导通,反之关断。

以透射式为例,如图4.1所示,当不透光的物体挡住发射与接收之间的间隙时,开关管关断,否则打开。

为此,可以制作一个遮光叶片如图4.2所示,安装在转轴上,当扇叶经过时,产生脉冲信号。

当叶片数较多时,旋转一周可以获得多个脉冲信号。

选用的传感器型号为SZGB-3(单向)

(2)、SZGB-3型传感器特点介绍如下:

1、供单向计数器使用,测量转速和线速度.

2、采用密封结构性能稳定.

3、光源用红外发光管,功耗小,寿命长.

4、SZGB-3,20电源电压为12VDC

SZGB-3型传感器主要性能介绍如下:

1、SZGB-3.型光电转速传感器,使用时通过连轴节与被测转轴连接,当转轴旋转时,将转角位移转换成电脉冲信号,供二次仪表计数使用;

2、输出脉冲数:

60脉冲(每一转)2)输出信号幅值:

50r/min时300mV3)测速范围:

50---5000r/min;

3、使用时间:

可连续使用,使用中勿需加润滑油5)工作环境:

温度-10~40℃,相对湿度≤85%无腐蚀性气体;

2.1.1最小系统

图2-1-1最小系统仿真

MCS-51 单片机复位电路是指单片机的初始化操作。

单片机启运运行时,都需要先复位,其作用是使CPU和系统中其他部件处于一个确定的初始状态,并从这个状态开始工作。

因而,复位是一个很重要的操作方式。

但单片机本身是不能自动进行复位的,必须配合相应的外部电路才能实现。

复位电路的基本功能是:

系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。

为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。

单片机的复位是由外部的复位电路来实现的。

片内复位电路是复位引脚RST通过一个斯密特触发器与复位电路相连,斯密特触发器用来抑制噪声,它的输出在每个机器周期的S5P2,由复位电路采样一次。

2.1.2晶振电路

图2-1-2晶振电路

2.2转速测量电路

转速测量的方案选择,一般要考虑传感器的结构、安装以及测速范围与环境条件等方面的适用性;再就是二次仪表的要求,除了显示以外还有控制、通讯和远传方面的要求。

本说明书中给出两种转速测量方案,经过我和伙伴查资料、构思和自己的设计,总体电路我们有两套设计方案,部分重要模块也考虑了其它设计方法,经过分析,从实现难度、熟悉程度、器件用量等方面综合考虑,我们才最终选择了一个方案。

下面就看一下我们对两套设计方案的简要说明。

方案一:

霍尔传感器测量方案

霍尔传感器是利用霍尔效应进行工作的?

其核心元件是根据霍尔效应原理制成的霍尔元件。

本文介绍一种泵驱动轴的转速采用霍尔转速传感器测量。

霍尔转速传感器的结构原理图如图3.1,霍尔转速传感器的接线图如图3.2。

传感器的定子上有2个互相垂直的绕组A和B,在绕组的中心线上粘有霍尔片HA和HB,转子为永久磁钢,霍尔元件HA和HB的激励电机分别与绕组A和B相连,它们的霍尔电极串联后作为传感器的输出。

图3.1霍尔转速传感器的结构原理图

缺点:

采用霍尔传感器在信号采样的时候,会出现采样不精确,因为它是靠磁性感应才采集脉冲的,使用时间长了会出现磁性变小,影响脉冲的采样精度。

方案二:

光电传感器

整个测量系统的组成框图如图3.3所示。

从图中可见,转子由一直流调速电机驱动,可实现大转速范围内的无级调速。

转速信号由光电传感器拾取,使用时应先在转子上做好光电标记,具体办法可以是:

将转子表面擦干净后用黑漆(或黑色胶布)全部涂黑,再将一块反光材料贴在其上作为光电标记,然后将光电传感器(光电头)固定在正对光电标记的某一适当距离处。

光电头采用低功耗高亮度LED,光源为高可靠性可见红光,无论黑夜还是白天,或是背景光强有大范围改变都不影响接收效果。

光电头包含有前置电路,输出0—5V的脉冲信号。

接到单片机89C51的相应管脚上,通过89C51内部定时/计时器T0、T1及相应的程序设计,组成一个数字式转速测量系统。

光电传感器原理

优点:

这种方案使用光电转速传感器具有采样精确,采样速度快,范围广的特点。

综上所述,方案二使用光电传感器来作为本设计的最佳选择方案。

2.2.1转速信号采集电路

在设计中采用光电传感器采集信号,这种传感器是把旋转轴的转速变为相应频率的脉冲,然后用测量电路测出频率,由频率值就可知道所侧转素值。

这种测量方法具有传感器结构简单、可靠、测量精度高的特点。

是目前常用的一种测量转速的方法。

从光源发出的光通过测速齿盘上的齿槽照射到光电元件上,使光电元件感光。

测速齿盘上有12个齿槽,当测速齿槽旋转一周,光敏元件就能感受与开孔数相等次数的光次数。

对于被测电机的转速在50—1000r/min的来说,每转一周产生12个电脉冲信号,因此,传感器输出波形的频率的大小为:

10Hz≤f≤200Hz

测速齿盘装在发射光源(红外线发光二极管)与接收光源的装置(红外线接收二极管)之间,红外线发光二极管(规格IR3401)负责发出光信号,红外线接收三极管(规格3DU12)负责接收发出的光信号,产生电信号,每转过一个齿,光的明暗变化经历了一个正弦周期,即产生了正弦脉冲电信号。

发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(LED)、激光二极管及红外发射二极管。

光束不间断地发射,或者改变脉冲宽度。

接收器有光电二极管、光电三极管、光电池组成。

在接收器的前面,装有光学元件如透镜和光圈等。

在其后面是检测电路,它能滤出有效信号和应用该信号。

此外,光电开关的结构元件中还有发射板和光导纤维。

三角反射板是结构牢固的发射装置。

它由很小的三角锥体反射材料组成,能够使光束准确地从反射板中返回,具有实用意义。

它可以在与光轴0到25的范围改变发射角,使光束几乎是从一根发射线,经过反射后,还是从这根反射线返回。

分类和工作方式⑴槽型光电传感器把一个光发射器和一个接收器面对面地装在一个槽的两侧的是槽形光电。

发光器能发出红外光或可见光,在无阻情况下光接收器能收到光。

但当被检测物体从槽中通过时,光被遮挡,光电开关便动作。

输出一个开关控制信号,切断或接通负载电流,从而完成一次控制动作。

槽形开关的检测距离因为受整体结构的限制一般只有几厘米。

⑵对射型光电传感器若把发光器和收光器分离开,就可使检测距离加大。

由一个发光器和一个收光器组成的光电开关就称为对射分离式光电开关,简称对射式光电开关。

它的检测距离可达几米乃至几十米。

使用时把发光器和收光器分别装在检测物通过路径的两侧,检测物通过时阻挡光路,收光器就动作输出一个开关控制信号。

⑶反光板型光电开关把发光器和收光器装入同一个装置内,在它的前方装一块反光板,利用反射原理完成光电控制作用的称为反光板反射式(或反射镜反射式)光电开关。

正常情况下,发光器发出的光被反光板反射回来被收光器收到;一旦光路被检测物挡住,收光器收不到光时,光电开关就动作,输出一个开关控制信号。

⑷扩散反射型光电开关它的检测头里也装有一个发光器和一个收光器,但前方没有反光板。

正常情况下发光器发出的光收光器是找不到的。

当检测物通过时挡住了光,并把光部分反射回来,收光器就收到光信号,输出一个开关信号。

2.2.2转速信号处理电路

转速信号处理电路包括信号放大电路、整形及三极管整形电路。

由于产生的电压信号很小,所以要进行放大处理,一般要放大至少1000倍(≥60dB),然后在进行信号处理工作。

信号放大装置选用运算放大器TL084作为放大电压放大元件,采用两级放大电路,每一级都采用反响比例运算电路如图4.4.设计的电压放大倍数为3000倍。

其中第一级放大倍数为30,第二级放大倍数为100.放大后电压变化范围为0~4.8V。

TL084采用12V双电源供电,由于电源的供电电压在一定范围内有副值上的波动,形成干扰信号。

为起到消除干扰,实现滤波作用,故供电电源两端需接10UF的电容接地,电容选择金属化聚丙已烯膜电容。

两级运放放大所采用的供电电源均采用此接法。

整形电路的主要作用是将正弦波信号转化为方波脉冲信号,正弦波信号电压的最大幅值约为4.8V,最小幅值为0V。

整形电路设计的是一种滞回电压比较器,它具有惯性,起到抗干扰的作用。

从而向输入端输入的滞回比较器。

在整形电路的输入端接一个电容C7(103),起到的作用是阻止其他信号的干扰,并且将放大的信号进行滤波,解耦。

R11和R17是防止电路短路,起到保护电路的作用。

一次整形后的信号基本上为±5V的电平的脉冲信号,在脉冲计数时,常用的是+5V的脉冲信号。

如果直接采用-5V的脉冲计数,会增加电路的复杂性,故一般不直接使用,而是先进行二次整形。

第二次用三极管整形电路,当输出为-5V的信号时,三极管VT2(8050)的基-射极和电阻R18组成并联电路电流经过R18.R17,三极管VT2处于反向偏置状态,所以,VT2的集-射极未接通,故处于截止状态。

电源回路由R19,三极管VT2的集-射极组成,采用单电源+12V供电,由于集射极截止,处于断路状态,故输出电压U0为V。

当第一次整形输出为+5V的信号时,三极管VT2基-射极处于正向偏置状态,有电流I通过,故此时三极管的集-射极处于通路状态。

电源电流流经电阻R19,三极管的集-射极到地端,由于集-射极导通时的电阻很小,可以忽略不计。

电源电压主要在R19上,其输出电压约为0V。

综上所述,三极管整形的电路的输入关系是:

信号为-5V时,U0=+12V;信号为+5V时,U0=0V。

整形仿真结果(multisim)

2.3数码管显示电路

显示部分包括如下图:

4个八段(共阳)数码管、PNP型三极管、电阻等。

其连接方式如下:

应用单片机P0口连接八段数码管,用P2端口作为数码管的片选信号输出端口,其中要用8550(PNP型)三极管做驱动。

又因为P0口做I/O口时要加上拉电阻,所以我们给P0各位各加一个10K的电阻到电源。

为了防止烧坏数码管,所以给数码管各段各加一个2.2K欧姆的限流电阻。

要显示的数据通过P0口送给数码管显示,通过P2口的P2.0—P2.3四个端口分别对数码管进行位选,事实上数码管是间断被点亮的,只是其间断时间十分短,扫描周期在20ms以下,利用人眼视觉暂留,我们基本看不出它们的闪烁电路图。

数码管实际上是由7个发光管组成的8字形构成的,加上小数点刚好8个。

如图2,分别命名为A、B、C、D、E、F、G、H。

当其对应管脚输入0(低电平)发光管亮。

图2-6数码管电路图

根据以上信息对应的P0端口连接关系,可得出下表2-2:

表2-2PO端口连接关系图

并根据表2-2上信息,得出显示“℃”符号对应的HEX代码为”0XF0,0XA9”.

这里的数码管采用动态显示,即首先显示一个数字,然后关掉,显示第二个数字,再关掉,接着显示下一个数字。

由于每位显示器点的时间极为短暂,由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位显示器并非同时点亮,但只要扫描的速度够快,给人的视觉感受就是稳定的同时现象,不会有闪烁感。

这样就能使实现我们的温度显示。

图2-7显示电路图

 

3软件设计流程及描述

硬件电路设计完毕,即进行程序设计,在程序设计之前,首先要确定定时器的工作方式,方式控制字,确定串行口的工作模式等,下面将分别讨论。

1.定时/计数器T0

本系统设计中,T0被用于计数,计数量大为好,可以获得较大的测量范围,因此,T0选定为工作方式1

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 天文地理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1