砼重力坝设计大纲.docx

上传人:b****4 文档编号:24531136 上传时间:2023-05-28 格式:DOCX 页数:29 大小:60.53KB
下载 相关 举报
砼重力坝设计大纲.docx_第1页
第1页 / 共29页
砼重力坝设计大纲.docx_第2页
第2页 / 共29页
砼重力坝设计大纲.docx_第3页
第3页 / 共29页
砼重力坝设计大纲.docx_第4页
第4页 / 共29页
砼重力坝设计大纲.docx_第5页
第5页 / 共29页
点击查看更多>>
下载资源
资源描述

砼重力坝设计大纲.docx

《砼重力坝设计大纲.docx》由会员分享,可在线阅读,更多相关《砼重力坝设计大纲.docx(29页珍藏版)》请在冰豆网上搜索。

砼重力坝设计大纲.docx

砼重力坝设计大纲

FJD31010FJD

水利水电工程技术设计阶段

混凝土实体重力坝坝体断面

设计大纲范本

 

水利水电勘测设计标准化信息网

1997年4月

《水利水电勘测设计技术文件范本》编审签名表

WJGL9207(19930405)

签名表总编号:

WJQM

签名表分表号:

WJQMF

文件题名

水利水电工程技术设计阶段混凝土实体重力坝坝体断面设计大纲范本

文件编号

立项日期

1994年05月8日

版本号

第1版

主编单位

华东勘测设计研究院

参编单位

软件开发单位

主编单位总工(签字):

韩祖恒1995年06月21日

审定人(签字):

年月日

主审人(签字):

崔淑君陆文扬1995年03月25日

编写人(签字):

徐建强陆文扬1995年01月20日

软件编写人员(签字):

年月日

主编单位项目负责人

陆文扬聂广明

结项日期

1995年06月23日

信息网编制工作组组长

吴明

验收日期

1997年03月10日

注:

①本表随项目合同下发,主编单位可根据独立编制文件的数量复制若干“分表”,并编分表号;

②本表应随文件编制过程流动、签字,并与手稿一起由主编单位归档;

③文件编制完毕向信息网提交成果时,应附本表复制件一份。

 

前言

1.本《范本》由电力部华东勘测设计研究院徐建强高级工程师和陆文扬教授级高级工程师编写。

两位同志先后参加了石塘、高砂、斑竹等混凝土重力坝的设计工作。

2.本《范本》适用于大、中型水利水电工程技术设计阶段。

特大型工程或有特殊问题需要研究的工程,可参照使用,并视需要增加内容;对小型工程可适当简化。

3.本《范本》仅提供编写水利水电工程技术设计大纲的模式。

编写具体工程的技术设计大纲时,在《范本》的基础上,其内容与深度,应根据具体情况进行调整、补充和完善,《范本》不能代替具体工程的设计大纲。

4.本大纲内容深度与技术设计阶段相当,亦相当于电力工业部设计阶段调整后的招标设计阶段。

5.印刷版用“Word”排版。

 

水利水电勘测设计标准化信息网

1997年4月

工程

混凝土实体重力坝坝体断面设计大纲

(设计)

1引言

1.1适用范围

本设计大纲适用于工程设计阶段的混凝土重力坝坝体断面设计。

1.2工程概况

工程位于省(市)县(镇)境内的江(河)上,距市(镇)km。

坝址控制流域面积km2。

本工程以为主,兼有等综合利用效益。

总库容为亿m3,装机容量MW,保证出力MW,年平均发电量MWh。

枢纽由混凝土重力坝、等主要水工建筑物组成。

拦河坝为实体混凝土重力坝,最大坝高m。

2.设计依据文件和规范

2.1主要设计规范

(1)SDJ10-78水工建筑物抗震设计规范(试行);

(2)SDJ12-78水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分)(试

行)及其补充规定;

(3)SDJ21-78混凝土重力坝设计规范及其补充规定(试行)。

2.2参考规范

(1)SDJ20-78水工钢筋混凝土结构设计规范(试行);

(2)SDJ341-89溢洪道设计规范

(3)DL/T5005-92碾压混凝土坝设计导则。

2.3工程有关的文件

……

 

3.基本资料

3.1工程等别及拦河坝级别

本工程工程等别为等,拦河坝为级建筑物。

3.2水位和流量资料

洪水标准及各运行工况的水位和流量资料见表1。

洪水标准及各运行工况水位、流量

表1

运行工况

上游水位m

下泄流量m3/s

下游水位m

备注

P=a

包括发电与泄洪建筑物全部下泄流量

P=a

包括发电与泄洪建筑物全部下泄流量

正常运行

(1)

正常蓄水位,机组满发

正常运行

(2)

正常蓄水位,下游最低发电水位

注:

正常运行

(2)时的下泄流量,可能为半台机或1/3台机的最小流量。

3.3气象资料

(1)风速

多年平均最大风速m/s;

实测最大风速m/s。

(2)气温

各月月平均气温见表2。

各月月平均气温

表2单位:

月份

1

2

3

4

5

6

7

8

9

10

11

12

平均气温

多年平均气温℃;

极端最低气温℃;

极端最高气温℃。

3.4泥沙资料

坝前淤沙高程为m。

3.5基岩物理力学指标

3.5.1混凝土与基岩面的抗剪断参数

(1)新鲜基岩:

f=,c=kPa;

(2)微风化基岩:

f=,c=kPa;

(3)弱风化基岩:

f=,c=kPa;

(4)混凝土与基岩间摩擦系数f=。

提示:

混凝土重力坝的基础,高坝(坝高70m以上)可建在新鲜、微风化或弱风化下部基岩上;中坝(坝高3070m)可建在微风化至弱风化上部基岩上;

两岸地形较高部位的坝段,可适当放宽。

本工程挡水坝建于基岩上,溢流坝建于基岩上。

3.5.2基岩极限抗压强度

新鲜基岩kPa;微风化岩石kPa;弱风化岩石kPa。

3.6地震烈度

地震基本烈度为度;

地震设计烈度为度。

4.设计原则与假定

4.1设计方法及控制指标

混凝土重力坝需计算抗滑稳定及应力指标,并设计断面。

4.1.1抗滑稳定计算

提示:

(1)坝基面和坝体内部一般均用抗剪断强度公式计算,但对于4、5级坝抗震稳定应按抗剪强度公式计算。

(2)当按式(12)计算时,如应力计算中出现拉应力,则应将受拉部分面积扣除。

坝体抗滑稳定安全系数不应小于表3所列数据。

抗滑稳定安全系数表

表3

荷载组合

按抗剪强度公式计算K

按抗剪断强度

1级

2.3级

公式计算K

基本组合

1.10

1.05

3.0

特殊

校核洪水位情况

1.05

1.00

2.5

组合

地震情况

1.00

2.3

注:

深层抗滑稳定的安全系数应酌情提高,即基本组合3.0,特殊组合2.5。

4.1.2应力计算

提示:

(1)对于中、低坝,可只按材料力学方法计算坝的应力,有时可只计算坝体边缘垂直正应力。

(2)对于高坝,尤其当地质条件复杂时,除用材料力学方法计算外,宜同时进行模型试验或有限元法进行计算研究。

用材料力学法计算时,应力应满足下列要求。

4.1.2.1坝基面上垂直正应力

(1)运用期

1)在各种荷载组合情况下(地震荷载除外),坝基面所承受的最大垂直正应力y,max应小于坝基容许压应力(计算时分别计入扬压力和不计入扬压力);最小垂直正应力y,min应大于零(计算时应计入扬压力);

2)对于计算时考虑两个方向的弯矩和扭矩的坝段,可容许y,min为MPa的拉应力;

3)在地震情况下,坝体上游面容许出现MPa的瞬时拉应力。

提示:

根据SDJ10-78编制说明提供的实例,在坝基面的拉应力为:

新丰江(大头坝):

8度地震,0.34MPa;

丰满:

7度地震,0.28MPa;

黄松峪:

8度地震,0.31MPa;

西峪:

9度地震,0.04MPa。

(2)施工期

下游坝基面容许出现不大于0.10MPa的拉应力。

4.1.2.2坝体内部截面上应力

(1)运用期

1)坝体上游面最小主压应力(不计扬压力)应不小于0.25H(H为坝面计算点的静水头);

2)坝体最大主压应力,应不大于混凝土的容许压应力;

3)在地震情况下,对于坝顶以下1/4坝高范围,需核算仅由地震荷载引起的拉应力,混凝土的抗拉安全系数不应小于2.5;

4)坝体内一般不容许出现主拉应力,但容许有以下例外:

溢流坝堰顶部位;廊道及其它孔洞周边。

当上述部位出现拉应力时,可考虑配置钢筋。

5)对于碾压混凝土坝,必须核算断面突变截面的应力,并遵循

(1)的应力控制指标。

(2)施工期

1)坝体任何截面上的主压应力应不大于混凝土的容许压应力;

2)在坝体的下游面,可容许有不大于0.20MPa的主拉应力。

用模型试验或有限元法分析坝体应力时,可不受上述应力控制指标的限制。

但如果局部应力数值超过控制指标较多时,应研究其原因,必要时应设法改善。

本工程采用法分析重力坝应力。

4.2混凝土标号选择及其性能指标

4.2.1混凝土分区及标号选择

(1)坝体混凝土在不同部位和不同条件下应采用分区标号,一般分成下列各区:

Ⅰ区上、下游水位以上坝体外部表面混凝土;

Ⅱ区上、下游水位变化区的坝体外部表面混凝土;

Ⅲ区上、下游最低水位以下坝体外部表面混凝土;

Ⅳ区基础混凝土;

Ⅴ区坝体内部混凝土;

Ⅵ区抗冲刷部位的混凝土(例如溢流面、泄水孔、导墙和闸墩等)。

混凝土分区标号的性能应符合表4的要求。

同一浇筑块中标号不得超过两种。

分区厚度尺寸至少为2m3m(对于碾压混凝土坝坝体内部混凝土的分区宽度一般不小于5m)。

 

混凝土分区标号的性能

表4

抗冲

抗侵

最大水灰比

选择各区厚度的

严寒和寒冷地区

温和地区

主要因素

0.60

0.65

施工和冰冻深度

0.50

0.55

冰冻深度、抗渗和施工

0.55

0.60

抗渗、抗裂和施工

0.55

0.60

抗裂

0.70

0.70

0.50

0.50

抗冲耐磨

注:

①表中有“”的项目为选择各区混凝土标号的主要控制因素;有“”的项目为需要

提出要求的;有“”的项目为不需提出要求的。

②坝体内部有大孔口(例如:

导流底孔、坝内引水管和泄水孔等),孔壁周围的混凝土强

度及地震设计烈度在8度以上的坝体上部的混凝土强度均应适当提高。

③选择混凝土标号时,应注意由于温度、渗透压力及局部应力集中所造成的拉应力、

剪应力和过大的压应力。

④严寒及寒冷地区施工期冰冻严重,应特别重视坝体及各种附属建筑物的混凝土和钢

筋混凝土的抗冻性要求(包括各种路面、栏杆、胸墙和闸门槽等)。

严寒地区,在水位

变化频繁区,抗冻性应为D150D200(薄壁钢筋混凝土结构抗冻性应D200D250);

温和地区为满足耐久性也应有抗冻性要求。

⑤坝体内部混凝土标号不应低于100号(90天龄期)。

⑥有抗裂要求的混凝土见规范SDJ21-78第157条。

⑦溢流面、泄水孔、护坦、消力墩和尾坎等部位有抗冲要求的混凝土标号,不应低于

200250号(90天龄期),严寒地区应满足D150D250。

⑧在环境水有侵蚀性的情况下,应适当选择抗侵蚀性较好的水泥,外部水位变化区及

水下混凝土的水灰比应较表4减少0.05。

⑨坝体混凝土的分区根据具体情况可适当简化。

(2)混凝土抗冻标号应符合表5要求。

 

混凝土抗冻标号的最小允许值

表5

气候条件

结构类别

工作条件

水位涨落区的外部混凝土

水位涨落区以上

的外部混凝土

冻融循环总次数

50

50

严寒气候条件(最冷月月平均气温低于-10℃)

钢筋混凝土

D200

D250

D100

混凝土

D150

D200

寒冷气候条件(最冷月月平

均气温在-3-10℃之间)

钢筋混凝土

D150

D200

D50

混凝土

D100

D150

注:

(1)对于严寒和寒冷地区的1、2、3级建筑物,其水位涨落区的外部混凝土必须掺加气剂。

(2)冻融循环总次数,是指一年内气温从+3℃以上降至-3℃以下,然后回升至+3℃以上的

交替次数;或一年中月平均气温低于-3℃的期间内,因水位涨落而产生的冻融交替次数

(此期间水位每涨落一次算一次冻融)。

(3)气温资料应根据连续五年以上的实测资料统计其平均值。

一年中月平均气温低于-3℃

期间的水位涨落次数,可根据设计时预定的运行条件估算。

(4)在无抗冻要求的地区,即在最冷月月平均气温高于-3℃的地区,对1、2、3级建筑物

水位涨落区的外部混凝土,应根据具体情况提出D50或D100的要求,以保证建筑物

的耐久性。

(3)混凝土抗渗标号应符合表6要求。

混凝土抗渗标号的最小允许值

表6

项次

结构类型及运用条件

抗渗标号

1

大体积混凝土结构的下游面及建筑物内部

S2

2

大体积混凝土结构的挡水面防渗层混凝土

H30

S4

H=3070

S6

H70

S8

注:

(1)表中H为水头(m)

(2)承受侵蚀水作用的建筑物,其抗渗标号不得低于S4。

(3)采用抗渗标号大于S8时,应提出论证。

4.2.2混凝土性能指标

(1)混凝土的设计强度

一般指90天龄期的强度,按表7采用。

混凝土的设计强度

表7单位:

MPa

强度种类

符号

混凝土标号

75

100

150

200

250

300

1

轴心抗压

Ra

4.20

5.50

8.5

11.0

14.5

17.5

2

抗拉

R1

0.68

0.80

1.05

1.3

1.55

1.75

3

抗裂

R1

0.85

1.00

1.3

1.6

1.9

2.1

(2)混凝土容许应力

混凝土的容许应力按混凝土设计强度及相应的安全系数确定。

坝体混凝土强度安全系数按表8规定采用。

坝体混凝土强度安全系数

表8

项次

受力特征

基本组合

特殊组合(地震情况除外)

备注

1

抗压

4

3.5

2

抗拉

4

注:

(1)容许应力的采用首先应服从4.1.2条的规定。

(2)坝体的局部结构按SDJ20-78计算时,其安全系数应符合该规范的要求。

(3)坝体混凝土容重

本工程取为kN/m3。

(4)混凝土之间的抗剪断参数

本工程取f=,c=kPa。

4.3荷载及其组合

4.3.1荷载

(1)基本荷载

1)坝体及其上永久设备的自重;

2)正常蓄水位或设计洪水位时的静水压力;

3)相应于正常蓄水位或设计洪水位时的扬压力(包括渗透压力和浮托力,下同);

4)淤沙压力;

5)相应于正常蓄水位或设计洪水位时的浪压力;

6)冰压力;

7)土压力;

8)相应于设计洪水位时的动水压力;

9)其它出现机遇较多的荷载。

(2)特殊荷载

10)校核洪水位时的静水压力;

11)相应于校核洪水位时的扬压力;

12)相应于校核洪水位时的浪压力;

13)相应于校核洪水位时的动水压力;

14)地震荷载;

15)其它出现机遇很少的荷载。

4.3.2荷载组合

荷载组合分为基本组合和特殊组合两类,见表9。

荷载组合表

表9

荷载

计算

水位

荷载

备注

组合

情况

上游

水位

下游

水位

静水

压力

压力

淤沙

压力

压力

压力

地震

荷载

动水

压力

压力

(1)正常蓄水位

1)

2)

3)

4)

5)

7)

土压力根据坝体外是否填土石而定(下同)

(2)设计洪水位

1)

2)

3)

4)

5)

8)

7)

(3)冰冻

1)

2)

3)

4)

6)

7)

静水压力及扬压力按相应冬季库水位计算

(4)校核洪水位

1)

10)

11)

4)

12)

13)

7)

(5)地震

1)

2)

4)

5)

14)

7)

静水压力、扬压力和浪压力按正常蓄水位计算,有论证时可另作规定

(6)施工期

1)

上、下游水位、扬压力按可能出现情况考虑

(7)排水

失效

1)

2)

3)

4)

5)

7)

注:

分期施工的坝应按相应的荷载组合分期进行计算。

本工程计算表9中第种组合情况。

4.3.3荷载计算中的一些假定

(1)水容重取为10kN/m3;

(2)扬压力

1)作用于坝基面的扬压力,可能有图4-1所示5种情况:

本工程属第种情况。

渗透压力强度折减系数取:

河床坝段;岸坡坝段。

提示:

坝基面渗透压力折减系数参考值如下:

(1)河床坝段:

对应于图4-1(a),a=0.20.3;

对应于图4-1(b),a=0.50.7;

对应于图4-1(c),a=0.30.5;

对应于图4-1(d),a=1.0;

对应于图4-1(e),a1=0.20.3;a2=0.30.5。

(2)岸坡坝段:

对应于图4-1(a),a=0.30.4;

对应于图4-1(e),a1=0.30.4;a2=0.30.5;

其余较河床坝段适当提高。

2)作用于坝体内部的扬压力,可能有图4-1(c)、(d)两种型式。

本工程为。

渗透压力强度折减系数取。

提示:

坝体内部渗透压力强度折减系数参考值如下:

对应于图4-1(c),a=0.150.3;

对应于图4-1(e),a=1.0。

(3)淤沙压力

淤沙浮容重5kN/m3

淤沙内摩擦角n=0。

(4)浪压力

设计计算风速m/s;

校核计算风速m/s;

提示:

(1)对正常蓄水位及设计洪水位时,宜采用相应洪水期多年平均最大风速的

1.52.0倍;

(2)在校核洪水位时,宜采用相应洪水期多年平均最大风速。

吹程km。

提示:

除上述4条假定外,如需要,可随意增加或不增加任何内容。

譬如若坝受有地震

荷载和填土作用,则可增加地震荷载和土压力,如下述(5)、(6)。

(5)地震荷载

提示:

(1)水工建筑物抗震设计,一般采用基本烈度作为设计烈度。

对于1级挡水建筑物,

应根据其重要性和遭受震害的危害性,可在基本烈度基础上提高一度。

需要考虑

施工期和空库情况的地震作用时,可比设计烈度降低一度进行计算;

(2)地震荷载一般用拟静力法计算;

(3)一般只考虑顺河流方向的水平向地震作用。

设计烈度为8、9度的1、2级挡水建

筑物,应同时计入水平向和竖向地震惯性力,此时,应将竖向地震惯性力乘以0.5

的耦合系数;

(4)对高度超过150m的坝,应进行动力分析;

(5)对设计烈度高于9度的坝,应进行专门研究。

(6)土压力

填土高程m;

土容重kN/m3;

土的内摩擦角(或有效内摩擦角);

……。

5.设计工作内容与方法

5.1坝体结构布置

5.1.1非溢流坝

(1)坝顶高程

重力坝的坝顶高出水库静水位的高度由下式确定:

h=2h1+h0+hc

(1)

式中:

2h1浪高,m,按SDJ21-78(附17)式计算;

h0波浪中心线至水库静水位的高度,m,按SDJ21-78(附20)式计

算;

hc坝顶超高,m,按表10选用。

超高hc

表10单位:

m

荷载组合(运用情况)

坝的级别

备注

1

2

3

基本组合(正常运用)

0.7

0.5

0.4

特殊组合(非常运用)

0.5

0.4

0.3

提示:

坝顶高程的确定尚需考虑枢纽中其他建筑物(如船闸坝顶桥下通航净空)对坝顶

高程的要求。

(2)坝顶宽度

坝顶宽度根据运行和交通等要求确定。

(3)坝坡

提示:

上、下游坝坡及起坡点高程宜根据作用在坝体上的主要荷载通过断面优化或根据

经验(上游坝坡系数n=00.20;下游坝坡系数m=0.600.80,起坡顶点一般在坝顶

附近)初拟,然后通过稳定、应力分析及总体布置作适当调整。

5.1.2溢流坝

5.1.2.1溢流坝面曲线

(1)开敞式溢流孔

建议采用幂曲线,并按式

(1)计算:

(2)

式中:

k、n按表11查取;

k、n表

表11

上游坝面坡度

k

n

备注

垂直(30)

2.000

1.850

31

1.936

1.836

Hs定型设计水头,m,取Hs=(7595)HZmax(HZmax为堰顶最大作用水头m)。

具体取值需保证常遇洪水位闸门全开时不得出现负压;正常蓄水位或常遇洪水位闸门局部开启时可允许有不大的负压值,应在设计中经论证确定;校核洪水位闸门全开时出现的负压不得超过0.030.06MPa。

最大负压值PB(MPa)按式(3)计算:

(3)

原点上游宜采用椭圆曲线,其方程为:

(4)

式中:

aHs和bHs分别为椭圆曲线的长轴和短轴。

a、b由式(5)确定:

(5)

(2)设有胸墙的溢流孔

建议采用孔口泄流的抛物线。

当校核情况下最大作用水头HZmax(孔口中心线上)与孔口高D的比值

或闸门全开仍属孔口泄流时按式(6)计算:

(6)

式中:

孔口收缩断面上的流速系数,一般取=0.96;若孔前设有检修闸门槽时取=0.95。

原点上游曲线型式与胸墙底缘通盘考虑。

提示:

溢流坝的反弧段应结合下游消能设施统一考虑。

对挑流消能衔接,反弧半径可采用(410)h(h为校核洪水位闸门全开时反弧最低点处的水深),反弧处流速愈大,反弧半径也宜选用较大值。

5.1.2.2闸墩

(1)闸墩的形式和尺寸应满足布置、水流条件和结构上的要求。

(2)为满足水流条件,闸墩厚度取0.267Hs为宜(对于流线型闸墩也可取为0.200Hs);闸墩厚度还应满足强度条件。

(3)弧形闸门的闸墩厚度,对于采用圆柱铰的牛腿支承的闸墩,可按公式(7)、(8)估算:

1)当闸墩两侧同时受弧门支铰推力(中墩)时:

(7)

式中:

T闸墩厚度,m;

Kf混凝土抗裂安全系数,取Kf=1.25;

Pk弧门支铰总推力(含两侧),kN;

R1混凝土轴心抗拉设计强度,MPa,按表7采用;

b牛腿宽度,m,见后。

2)当闸墩一侧受弧门支铰推力(边墩)时:

(8)

式中:

e0弧门支铰推力对闸墩厚度重心的偏心距,m;

P1k弧门一只支铰的推力,kN0;

其余符号同前。

(4)牛腿尺寸按式(9)估算:

(9)

式中:

h牛腿高度,m;

其余符号同前。

牛腿的宽高比b/h宜小于0.7;牛腿底面与闸墩表面之间夹角应大于或等于45;牛腿外缘高度宜大于或等于h/3。

对于锥形铰闸墩

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1