陕西中考数学试题及答案.docx

上传人:b****4 文档编号:24410463 上传时间:2023-05-27 格式:DOCX 页数:20 大小:103.71KB
下载 相关 举报
陕西中考数学试题及答案.docx_第1页
第1页 / 共20页
陕西中考数学试题及答案.docx_第2页
第2页 / 共20页
陕西中考数学试题及答案.docx_第3页
第3页 / 共20页
陕西中考数学试题及答案.docx_第4页
第4页 / 共20页
陕西中考数学试题及答案.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

陕西中考数学试题及答案.docx

《陕西中考数学试题及答案.docx》由会员分享,可在线阅读,更多相关《陕西中考数学试题及答案.docx(20页珍藏版)》请在冰豆网上搜索。

陕西中考数学试题及答案.docx

陕西中考数学试题及答案

2009年陕西省初中毕业学业考试

数学

第Ⅰ卷(选择题共30分

A卷

一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的1.12

-

的倒数是(.

A.2B.2-C.12

D.12

-

2.1978年,我国国内生产总值是3645亿元,2007年升至249530亿元.将249530亿元

用科学记数表示为(.A.13

24.95310⨯元B.12

24.95310⨯元C.13

2.495310⨯元D.14

2.495310⨯元

3.图中圆与圆之间不同的位置关系有(.A.2种B.3种C.4种D.5种4.王老师为了了解本班学生课业负担情况,在班中随机调查了10名学生,他们每人上周平均每天完成家庭作业所用的时间分别是(单位:

小时:

1.5,2,2,2,2.5,2.5,2.5,2.5,3,3.5.则这10个数据的平均数和众数分别是(.A.2.4,2.5B.2.4,2C.2.5,2.5D.2.5,25.若正比例函数的图象经过点(1-,2,则这个图象必经过点(.A.(1,2B.(1-,2-C.(2,1-D.(1,2-6.如果点(12Pmm-,在第四象限,那么m的取值范围是(.A.102

m<<

B.102

m-

<

m>

7.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计,则这个圆锥的底面半径是(.A.1.5B.2C.3D.6

8.化简2

ba

aaab⎛⎫-⎪-⎝⎭

的结果是(.A.ab-B.ab+C.

1

ab-D.

1

ab

+

9.如图,9030AOBB∠=∠=°,°,AOB''△可以看作是由AOB△绕点O顺时针旋转α角度得到的.若点A'在AB上,

则旋转角α的大小可以是(.

A.30°B.45°C.60°D.90°

10.根据下表中的二次函数2

yaxbxc=++的自变量x与函数

y的对应值,可判断该二次函数的图象与x轴(.

(第3题图

120°

(第7题图

A

O

B

A'B'

(第9题图

AC.有两个交点,且它们均在y轴同侧D.无交点

第Ⅱ卷(非选择题共90分

二、填空题(共6小题,每小题3分,计18分11.0

31--=__________.

12.如图,ABCD∥,直线EF分别交ABCD、于点EF、,147∠=°,则2∠的大小是__________.13.若1122((AxyBxy,,,是双曲线3y

x

=

上的两点,

且120xx>>,则12_______yy{填“>”、“=”、“<”}.

14.如图,在梯形ABCD中,DCAB∥,DACB=.若104ABDC==,,tan2A=,则这个梯形的面积是__________.

15.一家商店将某种商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润__________元.

16.如图,在锐角ABC△中,45ABBAC=∠=°,

BAC∠的平分线交BC于点DMN,、分别是AD和AB上

的动点,则BMMN+的最小值是___________.

三、解答题(共9小题,计72分17.(本题满分5分解方程:

2

2312

4

xxx--=

+-.

18.(本题满分6分

如图,在ABCD中,点E是AD的中点,连接CE并延长,交BA的延长线于点F.求证:

FAAB=.

A

BD

CF

1

(第12题图

A

B

C

D

(第14题图

A

B

C

D

N

M

(第16题图

ABCD

EF(第18题图

19.(本题满分7分

某校为了组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,并绘制成如图①、②所示的条形和扇形统计图.

根据统计图中的信息,解答下列问题:

(1求本次被调查的学生人数,并补全条形统计图;

(2若全校有1500名学生,请你估计该校最喜欢篮球运动的学生人数;

(3根据调查结果,请你为学校即将组织的一项球类对抗赛提出一条合理化建议.20.(本题满分8分

小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:

如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度1.2CD=m,0.8CE=m,30CA=m(点AEC、、在同一直线上.

已知小明的身高EF是1.7m,请你帮小明求出楼高AB(结果精确到0.1m.

项目①

足球20%

篮球26%乒乓球32%

他②

(第19题图

(第20题图

21.(本题满分8分

在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h时,汽车与甲地的距离为y(km,y与x的函数关系如图所示.根据图象信息,解答下列问题:

(1这辆汽车的往、返速度是否相同?

请说明理由;(2求返程中y与x之间的函数表达式;

(3求这辆汽车从甲地出发4h时与甲地的距离.

22.(本题满分8分

甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数学游戏.游戏规则是:

将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?

请运用概率知识说明理由.23.(本题满分8分

如图,O⊙是ABC△的外接圆,ABAC=,过点A作APBC∥,交BO的延长线于点P.(1求证:

AP是O⊙的切线;

(2若O⊙的半径58RBC==,,求线段AP的长.

(第21题图

(第23题图

24.(本题满分10分

如图,在平面直角坐标系中,OBOA⊥,且2OBOA=,点A的坐标是(12-,.(1求点B的坐标;

(2求过点AOB、、的抛物线的表达式;

(3连接AB,在(2中的抛物线上求出点P,使得ABPABOSS=△△.25.(本题满分12分问题探究

(1请在图①的正方形ABCD内,画出使90APB∠=°的一个..点P,并说明理由.(2请在图②的正方形ABCD内(含边,画出使60APB∠=°的所有..的点P,并说明理由.

问题解决

(3如图③,现在一块矩形钢板43ABCDABBC==,,.工人师傅想用它裁出两块全等的、面积最大的APB△和CPD'△钢板,且60APBCPD'∠=∠=°.请你在图③中画出符合要求的点P和P',并求出APB△的面积(结果保留根号.

DCBA①DCB

A③DCBA②(第25题图

2009年陕西省初中毕业学业考试

数学试题参考答案

A卷

一、选择题(共10小题,每小题3分,计30分

二、填空题(共6小题,每小题3分,计18分

11.212.133°13.<14.4215.6016.4三、解答题(共9小题,计72分17.(本题满分5分解:

2

2

(2(43xx---=.························································································(2分

45x-=-.

54

x=

.·······················································································(4分

经检验,54

x=

是原方程的解.····················································································(5分

18.(本题满分6分

证明:

四边形ABCD是平行四边形,ABDCABDC∴=,∥.

FAEDFECD∴∠=∠∠=∠,.············(3分又EAED=,

AFEDCE∴△≌△.·······························(5分AFDC∴=.AFAB∴=.·············································(6分

19.(本题满分7分解:

(11326%50÷=,

∴本次被调查的人数是50.·

·········(2分补全的条形统计图如图所示.·······(4分

(第19题答案图

项目

A

B

C

D

E

F

(2150026%390⨯=,

∴该校最喜欢篮球运动的学生约为390人.·

·······························································(6分(3如“由于最喜欢乒乓球运动的人数最多,因此,学校应组织乒乓球对抗赛”等.(只要根据调查结果提出合理、健康、积极的建议即可给分··············································(7分20.(本题满分8分

解:

过点D作DGAB⊥,分别交ABEF、于点GH、,则1.2EHAGCD===,

0.830DHCEDGCA====,.························(2分EFAB∥,FHDHBG

DG

∴=.·························································(5分

由题意,知1.71.20.5FHEFEH=-=-=.0.50.8

30

BG∴

=,解之,得18.75BG=.···················(7分18.751.219.9520.0ABBGAG∴=+=+=≈.

∴楼高AB约为20.0米.·

·····························································································(8分21.(本题满分8分解:

(1不同.理由如下:

往、返距离相等,去时用了2小时,而返回时用了2.5小时,

∴往、返速度不同.·

·····································································································(2分(2设返程中y与x之间的表达式为ykxb=+,

则1202.505.

kbkb=+⎧⎨

=+⎩,

解之,得48240.kb=-⎧⎨=⎩,

········································································································(5分

∴48240yx=-+.

(2.55xx≤≤

(评卷时,自变量的取值范围不作要求·····(6分

(3当4x=时,汽车在返程中,48424048y∴=-⨯+=.

∴这辆汽车从甲地出发4h时与甲地的距离为48km.·················································(8分22.(本题满分8分

解:

这个游戏不公平,游戏所有可能出现的结果如下表:

表中共有16种等可能结果,小于45的两位数共有6种.··········································(5分

(第20题答案图

((6310516

8

16

8

PP∴==

=

=

甲获胜乙获胜,.·····································································(7分

3588

≠,

∴这个游戏不公平.·

·····································································································(8分23.(本题满分8分解:

(1证明:

过点A作AEBC⊥,交BC于点E.ABAC=,AE∴平分BC.

∴点O在AE上.·

······································(2分又APBC∥,AEAP∴⊥.

AP∴为O⊙的切线.································(4分(2142

BEBC==,

3OE∴=

=.

又AOPBOE∠=∠,OBEOPA∴△∽△.···································································································(6分

BEOEAP

OA

∴=.即

435

AP

=

.

203

AP∴=.·················································································································(8分

24.(本题满分10分

解:

(1过点A作AFx⊥轴,垂足为点F,过点B作BEx⊥轴,垂足为点E,

则21AFOF==,.

OAOB⊥,

90AOFBOE∴∠+∠=°.又90BOEOBE∠+∠=°,AOFOBE∴∠=∠.

RtRtAFOOEB∴△∽△.

2BE

OE

OB

OFAFOA

∴===.

24BEOE∴==,.(42B∴,.·····················································································································(2分(2设过点(12A-,,(42B,,(00O,的抛物线为2

yaxbxc=++.

216420.

abcabcc-+=⎧⎪

∴++=⎨⎪=⎩,,解之,得12

320abc⎧

=⎪⎪

⎪=-⎨⎪=⎪⎪⎩

,.

P

(第23题答案图

∴所求抛物线的表达式为2

132

2

yxx=

-

.··································································(5分

(3由题意,知ABx∥轴.

设抛物线上符合条件的点P到AB的距离为d,则112

2

ABPSABdABAF=

=

△.

2d∴=.

∴点P的纵坐标只能是0,或4.·

··············································································(7分令0y=,得213

022

xx-=.解之,得0x=,或3x=.

∴符合条件的点1(00P,

2(30P,.令4y=,得2

1342

2

xx-

=.解之,得32

=

.

符合条件的点33(

42

P-

43(

42

P+

.

∴综上,符合题意的点有四个:

1(00P,,2(30P,

33(

42

P-

43(

42

P+

·········································(10分(评卷时,无1(00P,

不扣分25.(本题满分12分

解:

(1如图①,

连接ACBD、交于点P,则90APB∠=°.

∴点P为所求.·

······················································(3分(2如图②,画法如下:

1以AB为边在正方形内作等边ABP△;

2作ABP△的外接圆O⊙,分别与ADBC、交于点EF、.在O⊙中,弦AB所对的

APB上的圆周角均为60°,EF

∴上的所有点均为所求的点P.···················(7分(3如图③,画法如下:

1连接AC;

2以AB为边作等边ABE△;

3作等边ABE△的外接圆O⊙,交AC于点P;4在AC上截取APCP'=.则点PP'、为所求.·············································(9分(评卷时,作图准确,无画法的不扣分过点B作BGAC⊥,交AC于点G.在RtABC△中,43ABBC==,.

D

C

B

A

(第25题答案图

5AC∴=

=.

12

5

ABBC

BGAC∴=

=

.·····························································································(10分

在RtABG△中,4AB=,

16

5

AG∴=

=

.

在RtBPG△中,60BPA∠=°,

12tan605

3

5

BGPG∴=

=

=

°

.

∴165

5

APAGPG=+=

+

.

11

16122

255

525APBSAPBG⎛∴=

=

⨯+⨯=⎝⎭

△.·································(12分

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 交规考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1