蛋白质的发现与研究发展.docx

上传人:b****2 文档编号:24371058 上传时间:2023-05-26 格式:DOCX 页数:9 大小:22.08KB
下载 相关 举报
蛋白质的发现与研究发展.docx_第1页
第1页 / 共9页
蛋白质的发现与研究发展.docx_第2页
第2页 / 共9页
蛋白质的发现与研究发展.docx_第3页
第3页 / 共9页
蛋白质的发现与研究发展.docx_第4页
第4页 / 共9页
蛋白质的发现与研究发展.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

蛋白质的发现与研究发展.docx

《蛋白质的发现与研究发展.docx》由会员分享,可在线阅读,更多相关《蛋白质的发现与研究发展.docx(9页珍藏版)》请在冰豆网上搜索。

蛋白质的发现与研究发展.docx

蛋白质的发现与研究发展

科学技术史论文

蛋白质的发现与研究发展

系别生物与环境工程学院专业班级T08生物工程

姓名孟云

学号T*******

日期2010年12月9日

蛋白质的发现与研究发展

摘要

蛋白质是一种复杂的有机化合物,旧称“朊(ruǎn)”。

氨基酸是组成蛋白质的基本单位,氨基酸通过脱水缩合连成肽链。

蛋白质是由一条或多条多肽链组成的生物大分子,每一条多肽链有二十至数百个氨基酸残基(-R)不等;各种氨基酸残基按一定的顺序排列。

蛋白质的氨基酸序列是由对应基因所编码。

除了遗传密码所编码的20种基本氨基酸,在蛋白质中,某些氨基酸残基还可以被翻译后修饰而发生化学结构的变化,从而对蛋白质进行激活或调控。

多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,折叠或螺旋构成一定的空间结构,从而发挥某一特定功能。

合成多肽的细胞器是细胞质中糙面型内质网上的核糖体。

食入的蛋白质在体内经过消化被水解成氨基酸被吸收后,重新合成人体所需蛋白质,同时新的蛋白质又在不断代谢与分解,时刻处于动态平衡中。

因此,食物蛋白质的质和量、各种氨基酸的比例,关系到人体蛋白质合成的量,尤其是青少年的生长发育、孕产妇的优生优育、老年人的健康长寿,都与膳食中蛋白质的量有着密切的关系。

关键词:

蛋白质氨基酸生长发育

 

序言

(1)

一、蛋白质的结构

(2)

二、蛋白质的性质

(2)

三、蛋白质的发现(3)

四、蛋白质的折叠过程(4)

五、蛋白质的研究和意义(5)

序言

随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。

在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。

尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。

虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。

一:

蛋白质的结构

蛋白质是以氨基酸为基本单位构成的生物大分子。

一级结构:

蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。

二级结构:

蛋白质分子局区域内,多肽链沿一定方向盘绕和折叠的方式。

三级结构:

蛋白质的二级结构基础上借助各种次级键卷曲折叠成特定的球状分子结构的空间构象。

四级结构:

多亚基蛋白质分子中各个具有三级结构的多肽链,以适当的方式聚合所形成的蛋白质的三维结构。

用约20种氨基酸作原料,在细胞质中的核糖体上,将氨基酸分子互相连接成肽链。

一个氨基酸分子的氨基,脱去一分子水而连接起来,这种结合方式叫做脱水缩合。

通过缩合反应,在羧基和氨基之间形成的连接两个氨基酸分子的那个键叫做肽键。

由肽键连接形成的化合物称为肽。

二:

蛋白质的性质

①具有两性

蛋白质是由α-氨基酸通过肽键构成的高分子化合物,在蛋白质分子中存在着氨基和羧基,因此跟氨基酸相似,蛋白质也是两性物质。

②可发生水解反应

蛋白质在酸、碱或酶的作用下发生水解反应,经过多肽,最后得到多种α-氨基酸。

蛋白质水解时,应找准结构中键的“断裂点”,水解时肽键

如:

蛋白质

nH2N—CH2—COOH

找到“断裂点”就可以确定蛋白质水解的产物

例如某蛋白质水解

可得三种α-氨基酸,为H2N—CH2—COOH、

③溶水具有胶体的性质

有些蛋白质能够溶解在水里(例如鸡蛋白能溶解在水里)形成溶液。

具有胶体性质。

蛋白质的分子直径达到了胶体微粒的大小(10-9~10-7m)时,所以蛋白质具有胶体的性质。

④加入电解质可产生盐析作用

少量的盐(如硫酸铵、硫酸钠等)能促进蛋白质的溶解,如向蛋白质水溶液中加入浓的无机盐溶液,可使蛋白质的溶解度降低,而从溶液中析出,这种作用叫做盐析.

这样盐析出的蛋白质仍旧可以溶解在水中,而不影响原来蛋白质的性质,因此盐析是个可逆过程.利用这个性质,采用盐析方法可以分离提纯蛋白质.

⑤蛋白质的变性

在热、酸、碱、重金属盐、紫外线等作作用下,蛋白质会发生性质上的改变而凝结起来.这种凝结是不可逆的,不能再使它们恢复成原来的蛋白质.蛋白质的这种变化叫做变性.

蛋白质变性后,就失去了原有的可溶性,也就失去了它们生理上的作用.因此蛋白质的变性凝固是个不可逆过程.

造成蛋白质变性的原因

物理因素包括:

加热、加压、搅拌、振荡、紫外线照射、超声波等:

化学因素包括:

强酸、强碱、重金属盐、三氯乙酸、乙醇、丙酮等。

⑥颜色反应

蛋白质可以跟许多试剂发生颜色反应.例如在鸡蛋白溶液中滴入浓硝酸,则鸡蛋白溶液呈黄色.这是由于蛋白质(含苯环结构)与浓硝酸发生了颜色反应的缘故.还可以用双缩脲试剂对其进行检验,该试剂遇蛋白质变紫.

⑦蛋白质在灼烧分解时,可以产生一种烧焦羽毛的特殊气味.

利用这一性质可以鉴别蛋白质.

三:

蛋白质的发现

蛋白质是荷兰科学家格里特在1838年发现的。

他观察到有生命的东西离开了蛋白质就不能生存。

蛋白质是生物体内一种极重要的高分子有机物,占人体干重的54%。

蛋白质主要由氨基酸组成,因氨基酸的组合排列不同而组成各种类型的蛋白质。

人体中估计有10万种以上的蛋白质。

生命是物质运动的高级形式,这种运动方式是通过蛋白质来实现的,所以蛋白质有极其重要的生物学意义。

人体的生长、发育、运动、遗传、繁殖等一切生命活动都离不开蛋白质。

生命运动需要蛋白质,也离不开蛋白质。

人体内的一些生理活性物质如胺类、神经递质多肽类激素、抗体、酶、核蛋白以及细胞膜上、血液中起“载体”作用的蛋白都离不开蛋白质,它对调节生理功能,维持新陈代谢起着极其重要的作用。

人体运动系统中肌肉的成分以及肌肉在收缩、作功、完成动作过程中的代谢无不与蛋白质有关,离开了蛋白质,体育锻炼就无从谈起。

在生物学中,蛋白质被解释为是由氨基酸借肽键联接起来形成的多肽,然后由多肽连接起来形成的物质。

通俗易懂些说,它就是构成人体组织器官的支架和主要物质,在人体生命活动中,起着重要作用,可以说没有蛋白质就没有生命活动的存在。

每天的饮食中蛋白质主要存在于瘦肉、蛋类、豆类及鱼类中。

蛋白质缺乏:

成年人:

肌肉消瘦、肌体免疫力下降、贫血,严重者将产生水肿。

未成年人:

生长发育停滞、贫血、智力发育差,视觉差。

蛋白质过量:

蛋白质在体内不能贮存,多了肌体无法吸收,过量摄入蛋白质,将会

因代谢障碍产生蛋白质中毒甚至于死亡。

在18世纪,安东尼奥·弗朗索瓦(AntoineFourcroy)和其他一些研究者发现蛋白质是一类独特的生物分子,他们发现用酸处理一些分子能够使其凝结或絮凝。

当时他们注意到的例子有来自蛋清、血液、血清白蛋白、纤维素和小麦面筋里的蛋白质。

荷兰化学家GerhardusJohannesMulder

对一般的蛋白质进行元素分析发现几乎所有的蛋白质都有相同的实验公

式。

用“蛋白质”这一名词来描述这类分子是由Mulder的合作者永斯·贝采利乌斯于1838年提出。

Mulder随后鉴定出蛋白质的降解产物,并发现其中含有为氨基酸的亮氨酸,并且得到它(非常接近正确值)的分子量为

131Da。

对于早期的生物化学家来说,研究蛋白质的困难在于难以纯化大量的蛋白质以用于研究。

因此,早期的研究工作集中于能够容易地纯化的蛋白质,如血液、蛋清、各种毒素中的蛋白质以及消化性和代谢酶(获取自屠宰场)。

1950年代后期,ArmourHotDogCo.公司纯化了一公斤纯的牛胰腺中的核糖核酸酶A,并免费提供给全世界科学家使用。

目前,科学家可以从生物公司购买越来越多的各类纯蛋白质。

著名化学家莱纳斯·鲍林成功地预测了基于氢键的规则蛋白质二级结构,而这一构想最早是由威廉·阿斯特伯里于1933年提出。

随后,WalterKauzman在总结自己对变性的研究成果和之前KajLinderstrom-Lang的研究工作的基础上,提出了蛋白质折叠是由疏水相互作用所介导的。

1949年,弗雷德里克·桑格首次正确地测定了胰岛素的氨基酸序列,并验证了蛋白质是由氨基酸所形成的线性(不具有分叉或其他形式)多聚体。

原子分辨率的蛋白质结构首先在1960年代通过X射线晶体学获得解析;到了1980年代,NMR也被应用于蛋白质结构的解析;近年来,冷冻电子显微学被广泛用于对于超大分子复合体的结构进行解析。

截至到2008年2月,蛋白质数据库中已存有接近50,000个原子分辨率的蛋白质及其相关复合物的三维结构的坐标。

四:

蛋白质的折叠过程

对蛋白质折叠机理的研究,对保留蛋白质活性,维持蛋白质稳定性和包涵体蛋白质折叠复性都具有重要的意义。

早在上世纪30年代,我国生化界先驱吴宪教授就对蛋白质的变性作用进行了阐释,30年后,Anfinsen通过对核糖核酸酶A的经典研究表明去折叠的蛋白质在体外可以自发的进行再折叠,仅仅是序列本身已经包括了蛋白质正确折叠的所有信息,并提出蛋白质折叠的热力学假说,为此Anfinsen获得1972年诺贝尔化学奖。

这一理论有两个关键点:

1蛋白质的状态处于去折叠和天然构象的平衡中;2天然构象的蛋白质处于热力学最低的能量状态。

尽管蛋白质的氨基酸序列在蛋白质的正确折叠中起着核心的作用,各种各样的因素,包括信号序列,

辅助因子,分子伴侣,环境条件,均会影响蛋白质的折叠,新生蛋白质折叠并组装成有功能的蛋白质,并非都是自发的,在多数情况下是需要其它蛋白质的帮助,已经鉴定了许多参与蛋白质折叠的折叠酶和分子伴侣,蛋白质“自发折叠”的经典概念发生了转变和更新,但这并不与折叠的热力学假说相矛盾,而是在动力学上完善了热力学观点。

在蛋白质的折叠过程中,有许多作用力参与,包括一些构象的空间阻碍,范德华力,氢键的相互作用,疏水效应,离子相互作用,多肽和周围溶剂相互作用产生的熵驱动的折叠,但对于蛋白质获得天然结构这一复杂过程的特异性,我们还知之甚少,许多实验和理论的工作都在加深我们对折叠的认识,但是问题仍然没有解决。

在折叠的机制研究上早期的理论认为,折叠是从变性状态通过中间状态到天然状态的一个逐步的过程,并对折叠中间体进行了深入研究,认为折叠是在热力学驱动下按单一的途径进行的。

后来的研究表明折叠过程存在实验可测的多种中间体,折叠通过有限的路径进行。

新的理论强调在折叠的初始阶段存在多样性,蛋白质通过许多的途径进入折叠漏斗(foldingfunnel),从而折叠在整体上被描述成一个漏斗样的图像,折叠的动力学过程被认为是部分折叠的蛋白质整体上的进行性装配,并且伴随有自由能和熵的变化,蛋白质最终寻找到自己的正确的折叠结构,这一理论称为能量图景(energylandscape),如图3所示,漏斗下方的凹凸反映蛋白质构象瞬间进入局部自由能最小区域。

能量图景(Theenergylandscape)的示意图,高度代表能量尺度,宽度代表构象尺度,在漏斗(funnel)的下方存在别的低能量状态,共存的不同能量状态的蛋白质种类也降到最小。

这一理论认为结构同源的蛋白质可以通过不同的折叠途径形成相似的天

然构象,人酸性成纤维生长因子(hFGF-1)和蝾螈酸性成纤维生长因子(nFGF-1)氨基酸序列具有约80%同源性,并且具有结构同源性(12个β

折叠反向平行排列形成β折叠桶),在盐酸胍诱导去折叠的过程中,hFGF-1可以监测到具有熔球体样的折叠中间体,而nFGF-1经由两态(天然状态到变性状态)去折叠,没有检测到中间体的存在,折叠的动力学研究也表明两种蛋白采用不同的折叠机。

对于同一蛋白质,采用的渗透压调节剂(osmolytes)不同,蛋白质叠的途径也不相同,说明不同的渗透压调节剂对蛋白质的稳定效应不同。

这两个例子都说明折叠机制的复杂性,也与上面所介绍的理论相吻合。

五:

蛋白质的研究和意义

1.蛋白质组学研究的研究意义和背景

随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。

在这个时代,生命科学的主要研究对象是功能基因组学,包括结构

基因组研究和蛋白质组研究等。

尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。

目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析(Serialanalysisofgeneexpression,SAGE)等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。

但事实并不完全如此,从DNAmRNA蛋白质,存在三个层次的调控,即转录水平调控(Transcriptionalcontrol),翻译水平调控(Translationalcontrol),翻译后水平调控(Post-translationalcontrol)。

从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。

实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相关性更差。

更重要的是,蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等则几乎无法从mRNA水平来判断。

毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。

蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。

虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。

2.蛋白质组学研究的策略和范围

蛋白质组学一经出现,就有两种研究策略。

一种可称为“竭泽法”,即采用高通量的蛋白质组研究技术分析生物体内尽可能多乃至接近所有的蛋白质,这种观点从大规模、系统性的角度来看待蛋白质组学,也更符合蛋白质组学的本质。

但是,由于蛋白质表达随空间和时间不断变化,要分析生物体内所有的蛋白质是一个难以实现的目标。

另一种策略可称为“功能法”,即研究不同时期细胞蛋白质组成的变化,如蛋白质在不同环境下的差异表达,以发现有差异的蛋白质种类为主要目标。

这种观点更倾向于把蛋白质组学作为研究生命现象的手段和方法。

早期蛋白质组学的研究范围主要是指蛋白质的表达模式(Expressionprofile),随着学科的发展,蛋白质组学的研究范围也在不断完善和扩充。

蛋白质翻译后修饰研究已成为蛋白质组研究中的重要部分和巨大挑战。

蛋白质-蛋白质相互作用的研究也已被纳入蛋白质组学的研究范畴。

而蛋白质高级结构的解析即传统的结构生物学,虽也有人试图将其纳入蛋白质组学研究范围,但目前仍独树一帜。

3.蛋白质组学研究技术

可以说,蛋白质组学的发展既是技术所推动的也是受技术限制的。

蛋白质组学研究成功与否,很大程度上取决于其技术方法水平的高低。

蛋白质研究技术远比基因技术复杂和困难。

不仅氨基酸残基种类远多于核苷酸残基(20/4),而且蛋白质有着复杂的翻译后修饰,如磷酸化和糖基化等,

给分离和分析蛋白质带来很多困难。

此外,通过表达载体进行蛋白质的体外扩增和纯化也并非易事,从而难以制备大量的蛋白质。

蛋白质组学的兴起对技术有了新的需求和挑战。

蛋白质组的研究实质上是在细胞水平上对蛋白质进行大规模的平行分离和分析,往往要同时处理成千上万种蛋白质。

因此,发展高通量、高灵敏度、高准确性的研究技术平台是现在乃至相当一段时间内蛋白质组学研究中的主要任务。

当前在国际蛋白质组研究技术平台的技术基础和发展趋势有以下几个方面:

3.2蛋白质组研究中的样品分离和分析

利用蛋白质的等电点和分子量通过双向凝胶电泳的方法将各种蛋白

质区分开来是一种很有效的手段。

它在蛋白质组分离技术中起到了关键作用。

如何提高双向凝胶电泳的分离容量、灵敏度和分辨率以及对蛋白质差异表达的准确检测是目前双向凝胶电泳技术发展的关键问题。

国外的主要趋势有第一维电泳采用窄pH梯度胶分离以及开发与双向凝胶电泳相结合的高灵敏度蛋白质染色技术,如新型的荧光染色技术。

质谱技术是目前蛋白质组研究中发展最快,也最具活力和潜力的技术。

它通过测定蛋白质的质量来判别蛋白质的种类。

当前蛋白质组研究的核心技术就是双向凝胶电泳-质谱技术,即通过双向凝胶电泳将蛋白质分离,然后利用质谱对蛋白质逐一进行鉴定。

对于蛋白质鉴定而言,高通量、高灵敏度和高精度是三个关键指标。

一般的质谱技术难以将三者合一,而最近发展的质谱技术可以同时达到以上三个要求,从而实现对蛋白质准确和大规模的鉴定。

科学技术史论文

参考文献

[1]杨睿,刘绍璞.某些分子光谱法测定蛋白质的进展[J].分析化学,2001,29

(2):

232-241.

[2]王建森,刘保生,孙艳梅,等.蛋白质光度法定量分析研究现状[J].光谱实验室,2005,22(3):

599-606.

[3]王春风,王京芳,李全民,等.偶氮胂羧与蛋白质作用的光谱性质及其分析应用研究[J].化学试剂,2005,27(9):

541-544.[4]屈凌波,李建军,黄保军,等.钙黄绿素分光光度法测定人血清白蛋白[J].分析试验室,2007,26(9):

92-94.

8

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 中国风

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1