哈工大机械原理大作业2凸轮.docx
《哈工大机械原理大作业2凸轮.docx》由会员分享,可在线阅读,更多相关《哈工大机械原理大作业2凸轮.docx(18页珍藏版)》请在冰豆网上搜索。
哈工大机械原理大作业2凸轮
HarbinInstituteofTechnology
机械原理大作业二
课程名称:
机械原理
设计题目:
凸轮结构设计
院系:
能源学院
指导教师:
唐德威赵永强
设计时间:
2013年6月27日
哈尔滨工业大学
一、设计题目
1、凸轮机构运动简图:
2、凸轮机构的原始参数
序号
升程
升程运动角
升程运动规律
升程许用压力角
回程运动角
回程运动规律
回程许用压力角
远休止角
近休止角
21
110
150°
3-4-5多项式
40°
100°
3-4-5多项式
60°
45°
65°
二、凸轮推杆升程、回程运动方程及推杆位移,速度,加速度线图
1、推杆升程,回程运动方程如下:
A.推杆升程方程:
设
,
由3-4-5多项式可知:
当
时,有:
式中
H=110,
B.推杆回程方程:
当13π/12≤φ≤59π/36时,有:
式中
h=110
ϕs=5π/9
2、推杆位移,速度,加速度线图如下(用matlab编程得):
A、推杆位移线图
clear
clc
x1=linspace(0,5*pi/6,300);
x2=linspace(5*pi/6,13*pi/12,300);
x3=linspace(13*pi/12,59*pi/36,300);
x4=linspace(59*pi/36,2*pi,300);
t1=x1/(5*pi/6)
s1=110*(10*t1.^3-15*t1.^4+6*t1.^5);
s2=110;
t2=9*x3/(5*pi)-39/20;
s3=110*(1-(10*t2.^3-15*t2.^4+6*t2.^5));
s4=0;
plot(x1,s1,'k',x2,s2,'k',x3,s3,'k',x4,s4,'k');
xlabel('角度/rad');
ylabel('位移s/mm');
title('推杆位移线图');
grid;
B、推杆速度线图
clear
clc
x1=linspace(0,5*pi/6,300);
x2=linspace(5*pi/6,13*pi/12,300);
x3=linspace(13*pi/12,59*pi/36,300);
x4=linspace(59*pi/36,2*pi,300);
f1=5*pi/6;
t1=x1/f1;
f2=5*pi/9;
t2=9*x3/(5*pi)-39/20;
v1=(t1.^2-2*t1.^3+t1.^4)*3300/f1;
v2=0;
v3=-30*110*(t2.^2-2*t2.^3+t2.^4)/f2;
v4=0;
plot(x1,v1,'k',x2,v2,'k',x3,v3,'k',x4,v4,'k')
xlabel('角度/rad');
ylabel('速度v/(mm/s)');
title('推杆速度线图');
grid;
C、推杆加速度线图
clear
clc
x1=linspace(0,5*pi/6,300);
x2=linspace(5*pi/6,13*pi/12,300);
x3=linspace(13*pi/12,59*pi/36,300);
x4=linspace(59*pi/36,2*pi,300);
f1=5*pi/6;
t1=x1/f1;
f2=5*pi/9;
t2=9*x3/(5*pi)-39/20;
a1=60*110*(t1-3*t1.^2+2*t1.^3)/f1^2;
a2=0;
a3=-60*110*(t2-3*t2.^2+2*t2.^3)/f2^2;
a4=0;
plot(x1,a1,'k',x2,a2,'k',x3,a3,'k',x4,a4,'k')
xlabel('角度/rad');
ylabel('加速度a/');
title('推杆加速度线图');
grid;
三、凸轮机构的ds/dψ---s线图,并依次确定凸轮的基圆半径和偏距
1、凸轮机构的ds/dψ--s线图:
clear
clc
x1=linspace(0,5*pi/6,300);
x2=linspace(5*pi/6,13*pi/12,300);
x3=linspace(13*pi/12,59*pi/36,300);
x4=linspace(59*pi/36,2*pi,300);
f2=5*pi/9;
f1=5*pi/6;
t1=x1/(5*pi/6)
s1=110*(10*t1.^3-15*t1.^4+6*t1.^5);
s2=110;
t2=9*x3/(5*pi)-39/20;
s3=110*(1-(10*t2.^3-15*t2.^4+6*t2.^5));
s4=0;
v1=(t1.^2-2*t1.^3+t1.^4)*3300/f1;
v2=0;
v3=-30*110*(t2.^2-2*t2.^3+t2.^4)/f2;
v4=0;
plot(v1,s1,'r',v2,s2,'r',v3,s3,'r',v4,s4,'r');
xlabel('ds/dψ');
ylabel('位移s/mm');
title('ds/dψ—s曲线');
grid;
2、确定凸轮的基圆半径和偏距:
clear
clc
x1=linspace(0,5*pi/6,300);
x2=linspace(5*pi/6,13*pi/12,300);
x3=linspace(13*pi/12,59*pi/36,300);
x4=linspace(59*pi/36,2*pi,300);
f2=5*pi/9;
f1=5*pi/6;
t1=x1/(5*pi/6)
s1=110*(10*t1.^3-15*t1.^4+6*t1.^5);
s2=110;
t2=9*x3/(5*pi)-39/20;
s3=110*(1-(10*t2.^3-15*t2.^4+6*t2.^5));
s4=0;
v1=(t1.^2-2*t1.^3+t1.^4)*3300/f1;
v2=0;
v3=-30*110*(t2.^2-2*t2.^3+t2.^4)/f2;
v4=0;
k1=tan(pi/2-40*pi/180);k2=-tan(pi/6);
f=sym('-k1*(2*k/f1^3-6*k^2/f1^4+4*k^3/f1^5)+k^2/f1^3-2*k^3/f1^4+k^4/f1^5=0');
k=solve(f);
t01=k/f1;
s01=110*(10*t01.^3-15*t01.^4+6*t01.^5);
v01=(t01.^2-2*t01.^3+t01.^4)*3300/f1;
c=80.5056;
d=41.7790;%求出推程切点坐标
x=-200:
1:
200;
y5=k1*(x-c)+d;
f2=5*pi/9;
k2=-tan(pi/6);
f=sym('-k2*(-2*(k*9/(5*pi)-39/20)*9/(5*pi)+6*(k*9/(5*pi)-39/20)^2*9/(5*pi)-4*(k*9/(5*pi)-39/20)^3*9/(5*pi))-(k*9/(5*pi)-39/20)^2+2*(k*9/(5*pi)-39/20)^3-(k*9/(5*pi)-39/20)^4=0');
k=solve(f);
t02=k*9/(5*pi)-39/20;
s02=110*(1-(10*t02.^3-15*t02.^4+6*t02.^5));
v02=-30*110*(t02.^2-2*t02.^3+t02.^4)/f2;
o=32.1715;
p=-112.4712;%求出回程切点坐标
y6=k2*(x-p)+o;
y7=x*-k1;
plot(v1,s1,v2,s2,v3,s3,v4,s4,x,y5,x,y6,x,y7);
xlabel('ds/dψ');
ylabel('位移s/mm');
title('ds/dψ—s曲线');
grid;
所以,由图就可以确定回转中心所在的区域,所以,可取偏距e=20mm,
mm,
所以
mm。
四、滚子半径的确定及凸轮理论轮廓和实际轮廓的绘制.
1、确定滚子半径
clear
clc
s0=80;e=20;r0=sqrt(s0^2+e^2);
forx1=0:
0.01:
5*pi/6;
t1=x1/(5*pi/6);
s1=110*(10*t1.^3-15*t1.^4+6*t1.^5);
xx1=(s0+s1)*cos(x1)-e*sin(x1);
y1=(s0+s1)*sin(x1)+e*cos(x1);
dxx1=-(s0+s1)*sin(x1)-e*cos(x1);
dy1=(s0+s1)*cos(x1)-e*sin(x1);
d2xx1=-(s0+s1)*cos(x1)+e*sin(x1);
d2y1=-(s0+s1)*sin(x1)-e*cos(x1);
p1=(dxx1^2+dy1^2)^1.5/(dxx1*d2y1-d2xx1*dy1);
plot(x1,p1);
holdon;
end
forx2=5*pi/6:
0.01:
13*pi/12;
s2=110;
xx2=(s0+s2)*cos(x2)-e*sin(x2);
y2=(s0+s2)*sin(x2)+e*cos(x2);
dxx2=-(s0+s2)*sin(x2)-e*cos(x2);
dy2=(s0+s2)*cos(x2)-e*sin(x2);
d2xx2=-(s0+s2)*cos(x2)+e*sin(x2);
d2y2=-(s0+s2)*sin(x2)-e*cos(x2);
p2=(dxx2^2+dy2^2)^1.5/(dxx2*d2y2-d2xx2*dy2);
plot(x2,p2);
holdon;
end
forx3=13*pi/12:
0.01:
59*pi/36;
t2=9*x3/(5*pi)-39/20;
s3=110*(1-(10*t2.^3-15*t2.^4+6*t2.^5));
xx3=(s0+s3)*cos(x3)-e*sin(x3);
y3=(s0+s3)*sin(x3)+e*cos(x3);
dxx3=-(s0+s3)*sin(x3)-e*cos(x3);
dy3=(s0+s3)*cos(x3)-e*sin(x3);
d2xx3=-(s0+s3)*cos(x3)+e*sin(x3);
d2y3=-(s0+s3)*sin(x3)-e*cos(x3);
p3=(dxx3^2+dy3^2)^1.5/(dxx3*d2y3-d2xx3*dy3);
plot(x3,p3);
holdon;
end
forx4=59*pi/36:
0.01:
2*pi;
s4=0;
xx4=(s0+s4)*cos(x4)-e*sin(x4);
y4=(s0+s4)*sin(x4)+e*cos(x4);
dxx4=-(s0+s4)*sin(x4)-e*cos(x4);
dy4=(s0+s4)*cos(x4)-e*sin(x4);
d2xx4=-(s0+s4)*cos(x4)+e*sin(x4);
d2y4=-(s0+s4)*sin(x4)-e*cos(x4);
p4=(dxx4^2+dy4^2)^1.5/(dxx4*d2y4-d2xx4*dy4);
plot(x4,p4);
holdon;
end
title('曲率半径')
grid;
所以,可知最小曲率半径为
所以,小滚子
取小滚子曲率半径
mm
2、确定凸轮理论廓线,基元及实际廓线。
clear
clc
s0=80;e=20;r0=sqrt(s0^2+e^2);
forx1=0:
0.001:
5*pi/6;
t1=x1/(5*pi/6);
s1=110*(10*t1.^3-15*t1.^4+6*t1.^5);
xx1=(s0+s1)*cos(x1)-e*sin(x1);
y1=(s0+s1)*sin(x1)+e*cos(x1);
plot(xx1,y1);
holdon;
end
forx2=5*pi/6:
0.001:
13*pi/12;
s2=110;
xx2=(s0+s2)*cos(x2)-e*sin(x2);
y2=(s0+s2)*sin(x2)+e*cos(x2);
plot(xx2,y2);
holdon;
end
forx3=13*pi/12:
0.001:
59*pi/36;
t2=9*x3/(5*pi)-39/20;
s3=110*(1-(10*t2.^3-15*t2.^4+6*t2.^5));
xx3=(s0+s3)*cos(x3)-e*sin(x3);
y3=(s0+s3)*sin(x3)+e*cos(x3);
plot(xx3,y3);
holdon;
end
forx4=59*pi/36:
0.001:
2*pi;
s4=0;
xx4=(s0+s4)*cos(x4)-e*sin(x4);
y4=(s0+s4)*sin(x4)+e*cos(x4);
plot(xx4,y4);
holdon;
end
grid;
s0=80;e=20;r0=sqrt(s0^2+e^2);
forfai=0:
0.01:
2*pi;
a=r0*cos(fai);
b=r0*sin(fai);
plot(a,b);
holdon;
end
forx1=0:
0.05:
5*pi/6;
t1=x1/(5*pi/6);
s1=110*(10*t1.^3-15*t1.^4+6*t1.^5);
xx1=(s0+s1)*cos(x1)-e*sin(x1);
y1=(s0+s1)*sin(x1)+e*cos(x1);
plot(xx1,y1);
holdon;
forfai=0:
0.1:
2*pi;
a=xx1+15*cos(fai);
b=y1+15*sin(fai);
plot(a,b);
holdon;
end
end
forx2=5*pi/6:
0.05:
13*pi/12;
s2=110;
xx2=(s0+s2)*cos(x2)-e*sin(x2);
y2=(s0+s2)*sin(x2)+e*cos(x2);
plot(xx2,y2);
holdon;
forfai=0:
0.1:
2*pi;
a=xx2+15*cos(fai);
b=y2+15*sin(fai);
plot(a,b);
holdon;
end
end
forx3=13*pi/12:
0.05:
59*pi/36;
t2=9*x3/(5*pi)-39/20;
s3=110*(1-(10*t2.^3-15*t2.^4+6*t2.^5));
xx3=(s0+s3)*cos(x3)-e*sin(x3);
y3=(s0+s3)*sin(x3)+e*cos(x3);
plot(xx3,y3);
holdon;
forfai=0:
0.1:
2*pi;
a=xx3+15*cos(fai);
b=y3+15*sin(fai);
plot(a,b);
holdon;
end
end
forx4=59*pi/36:
0.05:
2*pi;
s4=0;
xx4=(s0+s4)*cos(x4)-e*sin(x4);
y4=(s0+s4)*sin(x4)+e*cos(x4);
plot(xx4,y4);
holdon;
forfai=0:
0.1:
2*pi;
a=xx4+15*cos(fai);
b=y4+15*sin(fai);
plot(a,b);
holdon;
end
end
gridon;