三角形内角和定理公开课获奖一等奖教案.docx
《三角形内角和定理公开课获奖一等奖教案.docx》由会员分享,可在线阅读,更多相关《三角形内角和定理公开课获奖一等奖教案.docx(18页珍藏版)》请在冰豆网上搜索。
三角形内角和定理公开课获奖一等奖教案
7.5三角形内角和定理
第1课时三角形内角和定理
第一环节:
情境引入
活动内容:
(1)用折纸的方法验证三角形内角和定理.
实验1:
先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38
(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图
(2)、(3)),最后得图(4)所示的结果
(1)
(2)(3)(4)
试用自己的语言说明这一结论的证明思路。
想一想,还有其它折法吗?
(2)实验2:
将纸片三角形三顶角剪下,随意将它们拼凑在一起。
试用自己的语言说明这一结论的证明思路。
想一想,如果只剪
下一个角呢?
活动目的:
对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。
将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.
教学效果:
说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验
证三角形内角和定理的原因。
第二环节:
探索
新知
活动内容:
1用严谨的证明来论证三角形内角和定理.
2
A
B
C
E
D
看哪个同学想的方法最多?
A
B
C
D
E
方法一:
过A点作DE∥BC
∵DE∥BC
∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相
等)
∵∠DAB+∠BAC+∠EAC=180°
∴∠BAC+∠B+∠C=180°(等量代换)
方法二:
作BC的延长线CD,过点C作射线CE∥BA.
∵CE∥BA
∴∠B=∠ECD(两直线平行,同位角相等)
∠A=∠ACE(两直线平行,内错角相等)
∵∠BCA+∠ACE+∠ECD=180°
∴∠A+∠B+∠ACB=180°(等量代换)
活动目的:
用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养学生的逻辑推理能力。
教学效果:
添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就
需要添辅助线创造条件,以达到证明的目的.
第三环节:
反馈练习
活动内容:
(1)△ABC中可以有3个锐角吗?
3个直角呢?
2个直角呢?
若有1个直角另外两角有什么特点?
(2)△ABC中,∠C=90°,∠A=30°,∠B=?
(3)∠A=50°,∠B=∠C,则△ABC中∠B=?
(4)三角形的三个内角中,只能有____个直角或____个钝角.
(5)任何一个三角形中,至少有____个锐角;至多有____个锐角.
(6)三角形中三角之比为1∶2∶3,则三个角各为多少度?
(7)已知:
△ABC中,∠C=∠B=
2∠A。
(a)求∠B的度数;
(b)若BD是AC边上的高,求∠DBC的度数?
活动目的:
通过学生的反馈练习,使教师能全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏.
教学效果:
学生对于三角形内角和定理的掌握是非常熟练,因此,学生能
较好地解决与三角形内角和定理相关的问题。
第四环节:
课堂小结
活动内容
:
1证明三角形内角和定理有哪几种方法?
2辅助线的作法技巧.
3三角形内角和定理的简单应用.
活动目的:
复习巩固本课知识,提高学生的掌握程度.
教学效果:
学生对于三角形内角和定理的几种不同的证明方法的理解比较深刻,并能熟练运用三角形内角和定理进
行相关证明.
课后练习:
随堂练习;习题7.5第1,2,3题
教学反思
三角形的有关知识是“空间与图形”中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:
(1)通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,
逐步转到符号化处理,最后达到推理论证的要求。
(2)充
分展示学生的个性,体现“学生是学习的主人”这一主题。
(3)添加辅助线是教学中的一个难点,如何添加辅助线则应允许学生展开思考并争论,展示学生的思维过程,然后在老师的引导下达成共识。
4.4 一次函数的应用
第1课时 确定一次函数的表达式
1.会确定正比例函数的表达式;(重点)
2.会确定一次函数的表达式.(重点)
一、情境导入
某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?
你知道乙播种机参与播种的天数是多少呢?
学习了本节的内容,你就知道了.
二、合作探究
探究点一:
确定正比例函数的表达式
求正比例函数y=(m-4)m2-15的表达式.
解析:
本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.
解:
由正比例函数的定义知m2-15=1且m-4≠0,∴m=-4,∴y=-8x.
方法总结:
利用正比例函数的定义确定表达式:
自变量的指数为1,系数不为0.
探究点二:
确定一次函数的表达式
【类型一】根据给定的点确定一次函数的表达式
已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.
解析:
先设一次函数的表达式为y=kx+b,因为它的图象经过(0,5)、(2,-5)两点,所以当x=0时,y=5;当x=2时,y=-5.由此可以得到两个关于k、b的方程,通过解方程即可求出待定系数k和b的值,再代回原设即可.
解:
设一次函数的表达式为y=kx+b,根据题意得,
∴
解得
∴一次函数的表达式为y=-5x+5.
方法总结:
“两点式”是求一次函数表达式的基本题型.二次函数y=kx+b中有两个待定系数k、b,因而需要知道两个点的坐标才能确定函数的关系式.
【类型二】根据图象确定一次函数的表达式
正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B为一次函数的图象与y轴的交点,且OA=2OB.求正比例函数与一次函数的表达式.
解析:
根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA的长,从而可以求出点B的坐标,根据A、B两点的坐标可以求出一次函数的表达式.
解:
设正比例函数的表达式为y1=k1x,一次函数的表达式为y2=k2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k1,3=4k2+b.∴k1=
,即正比例函数的表达式为y=
x.∵OA=
=5,且OA=2OB,∴OB=
.∵点B在y轴的负半轴上,∴B点的坐标为(0,-
).又∵点B在一次函数y2=k2x+b的图象上,∴-
=b,代入3=4k2+b中,得k2=
.∴一次函数的表达式为y2=
x-
.
方法总结:
根据图象确定一次函数的表达式的方法:
从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.
【类型三】根据实际问题确定一次函数的表达式
某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.
数量x/千克
售价y/元
1
8+0.4
2
16+0.8
3
24+1.2
4
32+1.6
5
40+2.0
…
…
解析:
从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、……
解:
由表中信息,得y=(8+0.4)x=8.4x,即售价y与数量x的函数关系式为y=8.4x.当x=2.5时,y=8.4×2.5=21.所以数量是2.5千克时的售价是21元.
方法总结:
解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.
三、板书设计
确定一次函数表达式
经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.
2.2 平方根
第1课时 算术平方根
1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)
2.根据算术平方根的概念求出非负数的算术平方根;(重点)
3.了解算术平方根的性质.(难点)
一、情境导入
上一节课我们做过:
由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a的大正方形,那么有a2=2,a=________,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫做x的平方,反过来x叫做a的什么呢?
二、合作探究
探究点一:
算术平方根的概念
【类型一】求一个数的算术平方根
求下列各数的算术平方根:
(1)64;
(2)2
;(3)0.36;(4)
.
解析:
根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.
解:
(1)∵82=64,∴64的算术平方根是8;
(2)∵(
)2=
=2
,∴2
的算术平方根是
;
(3)∵0.62=0.36,∴0.36的算术平方根是0.6;
(4)∵
=
,又92=81,∴
=9,而32=9,∴
的算术平方根是3.
方法总结:
(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求
与81的算术平方根的不同意义,不要被表面现象迷惑.
(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.
【类型二】利用算术平方根的定义求值
3+a的算术平方根是5,求a的值.
解析:
先根据算术平方根的定义,求出3+a的值,再求a.
解:
因为52=25,所以25的算术平方根是5,即3+a=25,所以a=22.
方法总结:
已知一个数的算术平方根,可以根据平方运算来解题.
探究点二:
算术平方根的性质
【类型一】含算术平方根式子的运算
计算:
+
-
.
解析:
首先根据算术平方根的定义进行开方运算,再进行加减运算.
解:
+
-
=7+5-15=-3.
方法总结:
解题时容易出现如
=
+
的错误.
【类型二】算术平方根的非负性
已知x,y为有理数,且
+3(y-2)2=0,求x-y的值.
解析:
算术平方根和完全平方式都具有非负性,即
≥0,a2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x和y的值,进而求得答案.
解:
由题意可得x-1=0,y-2=0,所以x=1,y=2.所以x-y=1-2=-1.
方法总结:
算术平方根、绝对值和完全平方式都具有非负性,即
≥0,|a|≥0,a2≥0,当几个非负数的和为0时,各数均为0.
三、板书设计
算术平方根
让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:
讲清概念,加强训练,逐步深化.
4.4 一次函数的应用
第1课时 确定一次函数的表达式
1.会确定正比例函数的表达式;(重点)
2.会确定一次函数的表达式.(重点)
一、情境导入
某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?
你知道乙播种机参与播种的天数是多少呢?
学习了本节的内容,你就知道了.
二、合作探究
探究点一:
确定正比例函数的表达式
求正比例函数y=(m-4)m2-15的表达式.
解析:
本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.
解:
由正比例函数的定义知m2-15=1且m-4≠0,∴m=-4,∴y=-8x.
方法总结:
利用正比例函数的定义确定表达式:
自变量的指数为1,系数不为0.
探究点二:
确定一次函数的表达式
【类型一】根据给定的点确定一次函数的表达式
已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.
解析:
先设一次函数的表达式为y=kx+b,因为它的图象经过(0,5)、(2,-5)两点,所以当x=0时,y=5;当x=2时,y=-5.由此可以得到两个关于k、b的方程,通过解方程即可求出待定系数k和b的值,再代回原设即可.
解:
设一次函数的表达式为y=kx+b,根据题意得,
∴
解得
∴一次函数的表达式为y=-5x+5.
方法总结:
“两点式”是求一次函数表达式的基本题型.二次函数y=kx+b中有两个待定系数k、b,因而需要知道两个点的坐标才能确定函数的关系式.
【类型二】根据图象确定一次函数的表达式
正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B为一次函数的图象与y轴的交点,且OA=2OB.求正比例函数与一次函数的表达式.
解析:
根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA的长,从而可以求出点B的坐标,根据A、B两点的坐标可以求出一次函数的表达式.
解:
设正比例函数的表达式为y1=k1x,一次函数的表达式为y2=k2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k1,3=4k2+b.∴k1=
,即正比例函数的表达式为y=
x.∵OA=
=5,且OA=2OB,∴OB=
.∵点B在y轴的负半轴上,∴B点的坐标为(0,-
).又∵点B在一次函数y2=k2x+b的图象上,∴-
=b,代入3=4k2+b中,得k2=
.∴一次函数的表达式为y2=
x-
.
方法总结:
根据图象确定一次函数的表达式的方法:
从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.
【类型三】根据实际问题确定一次函数的表达式
某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.
数量x/千克
售价y/元
1
8+0.4
2
16+0.8
3
24+1.2
4
32+1.6
5
40+2.0
…
…
解析:
从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、……
解:
由表中信息,得y=(8+0.4)x=8.4x,即售价y与数量x的函数关系式为y=8.4x.当x=2.5时,y=8.4×2.5=21.所以数量是2.5千克时的售价是21元.
方法总结:
解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.
三、板书设计
确定一次函数表达式
经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.