三角形内角和定理公开课获奖一等奖教案.docx

上传人:b****2 文档编号:24256981 上传时间:2023-05-25 格式:DOCX 页数:18 大小:77.42KB
下载 相关 举报
三角形内角和定理公开课获奖一等奖教案.docx_第1页
第1页 / 共18页
三角形内角和定理公开课获奖一等奖教案.docx_第2页
第2页 / 共18页
三角形内角和定理公开课获奖一等奖教案.docx_第3页
第3页 / 共18页
三角形内角和定理公开课获奖一等奖教案.docx_第4页
第4页 / 共18页
三角形内角和定理公开课获奖一等奖教案.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

三角形内角和定理公开课获奖一等奖教案.docx

《三角形内角和定理公开课获奖一等奖教案.docx》由会员分享,可在线阅读,更多相关《三角形内角和定理公开课获奖一等奖教案.docx(18页珍藏版)》请在冰豆网上搜索。

三角形内角和定理公开课获奖一等奖教案.docx

三角形内角和定理公开课获奖一等奖教案

7.5三角形内角和定理

第1课时三角形内角和定理

第一环节:

情境引入

活动内容:

(1)用折纸的方法验证三角形内角和定理.

实验1:

先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38

(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图

(2)、(3)),最后得图(4)所示的结果

(1)

(2)(3)(4)

试用自己的语言说明这一结论的证明思路。

想一想,还有其它折法吗?

(2)实验2:

将纸片三角形三顶角剪下,随意将它们拼凑在一起。

试用自己的语言说明这一结论的证明思路。

想一想,如果只剪

下一个角呢?

活动目的:

对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。

将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.

教学效果:

说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验

证三角形内角和定理的原因。

第二环节:

探索

新知

活动内容:

1用严谨的证明来论证三角形内角和定理.

2

A

B

C

E

D

看哪个同学想的方法最多?

A

B

C

D

E

 

方法一:

过A点作DE∥BC

∵DE∥BC

∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相

等)

∵∠DAB+∠BAC+∠EAC=180°

∴∠BAC+∠B+∠C=180°(等量代换)

方法二:

作BC的延长线CD,过点C作射线CE∥BA.

∵CE∥BA

∴∠B=∠ECD(两直线平行,同位角相等)

∠A=∠ACE(两直线平行,内错角相等)

∵∠BCA+∠ACE+∠ECD=180°

∴∠A+∠B+∠ACB=180°(等量代换)

活动目的:

用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养学生的逻辑推理能力。

教学效果:

添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就

需要添辅助线创造条件,以达到证明的目的.

第三环节:

反馈练习

活动内容:

(1)△ABC中可以有3个锐角吗?

3个直角呢?

2个直角呢?

若有1个直角另外两角有什么特点?

(2)△ABC中,∠C=90°,∠A=30°,∠B=?

(3)∠A=50°,∠B=∠C,则△ABC中∠B=?

(4)三角形的三个内角中,只能有____个直角或____个钝角.

(5)任何一个三角形中,至少有____个锐角;至多有____个锐角.

(6)三角形中三角之比为1∶2∶3,则三个角各为多少度?

(7)已知:

△ABC中,∠C=∠B=

2∠A。

(a)求∠B的度数;

(b)若BD是AC边上的高,求∠DBC的度数?

活动目的:

通过学生的反馈练习,使教师能全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏.

教学效果:

学生对于三角形内角和定理的掌握是非常熟练,因此,学生能

较好地解决与三角形内角和定理相关的问题。

第四环节:

课堂小结

活动内容

1证明三角形内角和定理有哪几种方法?

2辅助线的作法技巧.

3三角形内角和定理的简单应用.

活动目的:

复习巩固本课知识,提高学生的掌握程度.

教学效果:

学生对于三角形内角和定理的几种不同的证明方法的理解比较深刻,并能熟练运用三角形内角和定理进

行相关证明.

课后练习:

随堂练习;习题7.5第1,2,3题

教学反思

三角形的有关知识是“空间与图形”中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:

(1)通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,

逐步转到符号化处理,最后达到推理论证的要求。

(2)充

分展示学生的个性,体现“学生是学习的主人”这一主题。

(3)添加辅助线是教学中的一个难点,如何添加辅助线则应允许学生展开思考并争论,展示学生的思维过程,然后在老师的引导下达成共识。

4.4 一次函数的应用

第1课时 确定一次函数的表达式

                   

1.会确定正比例函数的表达式;(重点)

2.会确定一次函数的表达式.(重点)

一、情境导入

某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?

你知道乙播种机参与播种的天数是多少呢?

学习了本节的内容,你就知道了.

二、合作探究

探究点一:

确定正比例函数的表达式

求正比例函数y=(m-4)m2-15的表达式.

解析:

本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.

解:

由正比例函数的定义知m2-15=1且m-4≠0,∴m=-4,∴y=-8x.

方法总结:

利用正比例函数的定义确定表达式:

自变量的指数为1,系数不为0.

探究点二:

确定一次函数的表达式

【类型一】根据给定的点确定一次函数的表达式

已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.

解析:

先设一次函数的表达式为y=kx+b,因为它的图象经过(0,5)、(2,-5)两点,所以当x=0时,y=5;当x=2时,y=-5.由此可以得到两个关于k、b的方程,通过解方程即可求出待定系数k和b的值,再代回原设即可.

解:

设一次函数的表达式为y=kx+b,根据题意得,

解得

∴一次函数的表达式为y=-5x+5.

方法总结:

“两点式”是求一次函数表达式的基本题型.二次函数y=kx+b中有两个待定系数k、b,因而需要知道两个点的坐标才能确定函数的关系式.

【类型二】根据图象确定一次函数的表达式

正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B为一次函数的图象与y轴的交点,且OA=2OB.求正比例函数与一次函数的表达式.

解析:

根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA的长,从而可以求出点B的坐标,根据A、B两点的坐标可以求出一次函数的表达式.

解:

设正比例函数的表达式为y1=k1x,一次函数的表达式为y2=k2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k1,3=4k2+b.∴k1=

,即正比例函数的表达式为y=

x.∵OA=

=5,且OA=2OB,∴OB=

.∵点B在y轴的负半轴上,∴B点的坐标为(0,-

).又∵点B在一次函数y2=k2x+b的图象上,∴-

=b,代入3=4k2+b中,得k2=

.∴一次函数的表达式为y2=

x-

.

方法总结:

根据图象确定一次函数的表达式的方法:

从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.

【类型三】根据实际问题确定一次函数的表达式

某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.

数量x/千克

售价y/元

1

8+0.4

2

16+0.8

3

24+1.2

4

32+1.6

5

40+2.0

  …

  …

解析:

从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、……

解:

由表中信息,得y=(8+0.4)x=8.4x,即售价y与数量x的函数关系式为y=8.4x.当x=2.5时,y=8.4×2.5=21.所以数量是2.5千克时的售价是21元.

方法总结:

解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.

三、板书设计

确定一次函数表达式

经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.

2.2 平方根

第1课时 算术平方根

1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)

2.根据算术平方根的概念求出非负数的算术平方根;(重点)

3.了解算术平方根的性质.(难点)

                   

一、情境导入

上一节课我们做过:

由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a的大正方形,那么有a2=2,a=________,2是有理数,而a是无理数.在前面我们学过若x2=a,则a叫做x的平方,反过来x叫做a的什么呢?

二、合作探究

探究点一:

算术平方根的概念

【类型一】求一个数的算术平方根

求下列各数的算术平方根:

(1)64;

(2)2

;(3)0.36;(4)

.

解析:

根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.

解:

(1)∵82=64,∴64的算术平方根是8;

(2)∵(

)2=

=2

,∴2

的算术平方根是

(3)∵0.62=0.36,∴0.36的算术平方根是0.6;

(4)∵

,又92=81,∴

=9,而32=9,∴

的算术平方根是3.

方法总结:

(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求

与81的算术平方根的不同意义,不要被表面现象迷惑.

(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.

【类型二】利用算术平方根的定义求值

3+a的算术平方根是5,求a的值.

解析:

先根据算术平方根的定义,求出3+a的值,再求a.

解:

因为52=25,所以25的算术平方根是5,即3+a=25,所以a=22.

方法总结:

已知一个数的算术平方根,可以根据平方运算来解题.

探究点二:

算术平方根的性质

【类型一】含算术平方根式子的运算

计算:

.

解析:

首先根据算术平方根的定义进行开方运算,再进行加减运算.

解:

=7+5-15=-3.

方法总结:

解题时容易出现如

的错误.

【类型二】算术平方根的非负性

已知x,y为有理数,且

+3(y-2)2=0,求x-y的值.

解析:

算术平方根和完全平方式都具有非负性,即

≥0,a2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x和y的值,进而求得答案.

解:

由题意可得x-1=0,y-2=0,所以x=1,y=2.所以x-y=1-2=-1.

方法总结:

算术平方根、绝对值和完全平方式都具有非负性,即

≥0,|a|≥0,a2≥0,当几个非负数的和为0时,各数均为0.

三、板书设计

算术平方根

让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:

讲清概念,加强训练,逐步深化.

4.4 一次函数的应用

第1课时 确定一次函数的表达式

                   

1.会确定正比例函数的表达式;(重点)

2.会确定一次函数的表达式.(重点)

一、情境导入

某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?

你知道乙播种机参与播种的天数是多少呢?

学习了本节的内容,你就知道了.

二、合作探究

探究点一:

确定正比例函数的表达式

求正比例函数y=(m-4)m2-15的表达式.

解析:

本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.

解:

由正比例函数的定义知m2-15=1且m-4≠0,∴m=-4,∴y=-8x.

方法总结:

利用正比例函数的定义确定表达式:

自变量的指数为1,系数不为0.

探究点二:

确定一次函数的表达式

【类型一】根据给定的点确定一次函数的表达式

已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.

解析:

先设一次函数的表达式为y=kx+b,因为它的图象经过(0,5)、(2,-5)两点,所以当x=0时,y=5;当x=2时,y=-5.由此可以得到两个关于k、b的方程,通过解方程即可求出待定系数k和b的值,再代回原设即可.

解:

设一次函数的表达式为y=kx+b,根据题意得,

解得

∴一次函数的表达式为y=-5x+5.

方法总结:

“两点式”是求一次函数表达式的基本题型.二次函数y=kx+b中有两个待定系数k、b,因而需要知道两个点的坐标才能确定函数的关系式.

【类型二】根据图象确定一次函数的表达式

正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B为一次函数的图象与y轴的交点,且OA=2OB.求正比例函数与一次函数的表达式.

解析:

根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA的长,从而可以求出点B的坐标,根据A、B两点的坐标可以求出一次函数的表达式.

解:

设正比例函数的表达式为y1=k1x,一次函数的表达式为y2=k2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k1,3=4k2+b.∴k1=

,即正比例函数的表达式为y=

x.∵OA=

=5,且OA=2OB,∴OB=

.∵点B在y轴的负半轴上,∴B点的坐标为(0,-

).又∵点B在一次函数y2=k2x+b的图象上,∴-

=b,代入3=4k2+b中,得k2=

.∴一次函数的表达式为y2=

x-

.

方法总结:

根据图象确定一次函数的表达式的方法:

从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.

【类型三】根据实际问题确定一次函数的表达式

某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.

数量x/千克

售价y/元

1

8+0.4

2

16+0.8

3

24+1.2

4

32+1.6

5

40+2.0

  …

  …

解析:

从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、……

解:

由表中信息,得y=(8+0.4)x=8.4x,即售价y与数量x的函数关系式为y=8.4x.当x=2.5时,y=8.4×2.5=21.所以数量是2.5千克时的售价是21元.

方法总结:

解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.

三、板书设计

确定一次函数表达式

经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 企业管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1