1、三角形内角和定理 公开课获奖一等奖教案7.5 三角形内角和定理第1课时 三角形内角和定理第一环节:情境引入活动内容:(1)用折纸的方法验证三角形内角和定理 实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图638(1)然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3),最后得图(4)所示的结果(1) (2) (3) (4)试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。 试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?活动目的: 对比过去撕纸等探索过程,体会思
2、维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明教学效果: 说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。第二环节:探索新知活动内容:1用严谨的证明来论证三角形内角和定理2ABCED看哪个同学想的方法最多?ABCDE方法一:过A点作DEBC DEBCDAB=B,EAC=C(两直线平行,内错角相等)DAB+BAC+EAC=180BAC+B+C=180(等量代换)方法二:作BC的延长线CD,过点C作射线CEBA CEBAB=ECD(两直线平行,同位角相等)A=ACE(两直线平
3、行,内错角相等)BCA+ACE+ECD=180A+B+ACB=180(等量代换)活动目的: 用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养学生的逻辑推理能力。教学效果: 添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的第三环节:反馈练习活动内容: (1)ABC中可以有3个锐角吗? 3个直角呢? 2个直角呢?若有1个直角另外两角有什么特点?(2)ABC中,C=90,A=30,B=?(3)A=50,B=C,则ABC中B=?(4)三角形的三个内角中,只
4、能有_个直角或_个钝角(5)任何一个三角形中,至少有_个锐角;至多有_个锐角(6)三角形中三角之比为123,则三个角各为多少度?(7)已知:ABC中,C=B=2A。(a)求B的度数;(b)若BD是AC边上的高,求DBC的度数?活动目的: 通过学生的反馈练习,使教师能全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏教学效果: 学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题。第四环节:课堂小结活动内容:1证明三角形内角和定理有哪几种方法?2辅助线的作法技巧.3三角形内角和定理的简单应用.活动目的:
5、 复习巩固本课知识,提高学生的掌握程度教学效果: 学生对于三角形内角和定理的几种不同的证明方法的理解比较深刻,并能熟练运用三角形内角和定理进行相关证明.课后练习:随堂练习;习题7.5第1,2,3题教学反思三角形的有关知识是“空间与图形”中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:(1)通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号
6、化处理,最后达到推理论证的要求。(2)充分展示学生的个性,体现“学生是学习的主人”这一主题。(3)添加辅助线是教学中的一个难点,如何添加辅助线则应允许学生展开思考并争论,展示学生的思维过程,然后在老师的引导下达成共识。44一次函数的应用第1课时确定一次函数的表达式1会确定正比例函数的表达式;(重点)2会确定一次函数的表达式(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图你能通过图象提供的信息求出y与x之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了二、合作探
7、究探究点一:确定正比例函数的表达式 求正比例函数y(m4)m215的表达式解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式解:由正比例函数的定义知m2151且m40,m4,y8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0.探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式 已知一次函数的图象经过(0,5)、(2,5)两点,求一次函数的表达式解析:先设一次函数的表达式为ykxb,因为它的图象经过(0,5)、(2,5)两点,所以当x0时,y5;当x2时,y5.由此可以得到两个关于k、b的方程,
8、通过解方程即可求出待定系数k和b的值,再代回原设即可解:设一次函数的表达式为ykxb,根据题意得,解得一次函数的表达式为y5x5.方法总结:“两点式”是求一次函数表达式的基本题型二次函数ykxb中有两个待定系数k、b,因而需要知道两个点的坐标才能确定函数的关系式【类型二】 根据图象确定一次函数的表达式 正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B为一次函数的图象与y轴的交点,且OA2OB.求正比例函数与一次函数的表达式解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA的长,从而可以求出点B的坐标,根据A、B两点的坐标可以求出一次函数的表达式解:设正比例
9、函数的表达式为y1k1x,一次函数的表达式为y2k2xb.点A(4,3)是它们的交点,代入上述表达式中,得34k1,34k2b.k1,即正比例函数的表达式为yx.OA5,且OA2OB,OB.点B在y轴的负半轴上,B点的坐标为(0,)又点B在一次函数y2k2xb的图象上,b,代入34k2b中,得k2.一次函数的表达式为y2x.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式【类型三】 根据实际问题确定一次函数的表达式 某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下
10、表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元180.42160.83241.24321.65402.0解析:从图表中可以看出售价由80.4依次向下扩大到2倍、3倍、解:由表中信息,得y(80.4)x8.4x,即售价y与数量x的函数关系式为y8.4x.当x2.5时,y8.42.521.所以数量是2.5千克时的售价是21元方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答三、板书设计确定一次函数表达式经历对正比例函数及一次函数表达式的探求过程,掌握用待定系
11、数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维22平方根第1课时算术平方根1了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)2根据算术平方根的概念求出非负数的算术平方根;(重点)3了解算术平方根的性质(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a的大正方形,那么有a22,a_,2是有理数,而a是无理数在前面我们学过若x2a,则a叫做x的平方,反过来x叫做a的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根 求下
12、列各数的算术平方根:(1)64;(2)2;(3)0.36;(4).解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可解:(1)8264,64的算术平方根是8;(2)()22,2的算术平方根是;(3)0.620.36,0.36的算术平方根是0.6;(4),又9281,9,而329,的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求与81的算术平方根的不同意义,不要被表面现象迷惑(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用【类型二】 利用算术平方根的定义求值 3
13、a的算术平方根是5,求a的值解析:先根据算术平方根的定义,求出3a的值,再求a.解:因为5225,所以25的算术平方根是5,即3a25,所以a22.方法总结:已知一个数的算术平方根,可以根据平方运算来解题探究点二:算术平方根的性质【类型一】 含算术平方根式子的运算 计算:.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算解:75153.方法总结:解题时容易出现如的错误【类型二】 算术平方根的非负性 已知x,y为有理数,且3(y2)20,求xy的值解析:算术平方根和完全平方式都具有非负性,即0,a20,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x和y的值,进而求得答案解
14、:由题意可得x10,y20,所以x1,y2.所以xy121.方法总结:算术平方根、绝对值和完全平方式都具有非负性,即0,|a|0,a20,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根 让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的概念教学过程中要做到:讲清概念,加强训练,逐步深化44一次函数的应用第1课时确定一次函数的表达式1会确定正比例函数的表达式;(重点)2会确定一次函数的表达式(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成
15、800亩的播种任务,播种亩数与天数之间的函数关系如图你能通过图象提供的信息求出y与x之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了二、合作探究探究点一:确定正比例函数的表达式 求正比例函数y(m4)m215的表达式解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式解:由正比例函数的定义知m2151且m40,m4,y8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0.探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式 已知一次函数的图象经过(0,5)、(2,5)
16、两点,求一次函数的表达式解析:先设一次函数的表达式为ykxb,因为它的图象经过(0,5)、(2,5)两点,所以当x0时,y5;当x2时,y5.由此可以得到两个关于k、b的方程,通过解方程即可求出待定系数k和b的值,再代回原设即可解:设一次函数的表达式为ykxb,根据题意得,解得一次函数的表达式为y5x5.方法总结:“两点式”是求一次函数表达式的基本题型二次函数ykxb中有两个待定系数k、b,因而需要知道两个点的坐标才能确定函数的关系式【类型二】 根据图象确定一次函数的表达式 正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B为一次函数的图象与y轴的交点,且OA2OB.求正比例函数
17、与一次函数的表达式解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA的长,从而可以求出点B的坐标,根据A、B两点的坐标可以求出一次函数的表达式解:设正比例函数的表达式为y1k1x,一次函数的表达式为y2k2xb.点A(4,3)是它们的交点,代入上述表达式中,得34k1,34k2b.k1,即正比例函数的表达式为yx.OA5,且OA2OB,OB.点B在y轴的负半轴上,B点的坐标为(0,)又点B在一次函数y2k2xb的图象上,b,代入34k2b中,得k2.一次函数的表达式为y2x.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两
18、点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式【类型三】 根据实际问题确定一次函数的表达式 某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元180.42160.83241.24321.65402.0解析:从图表中可以看出售价由80.4依次向下扩大到2倍、3倍、解:由表中信息,得y(80.4)x8.4x,即售价y与数量x的函数关系式为y8.4x.当x2.5时,y8.42.521.所以数量是2.5千克时的售价是21元方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答三、板书设计确定一次函数表达式经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1