四年级数学上册 第一单元教案人教新课标版.docx

上传人:b****8 文档编号:23857349 上传时间:2023-05-21 格式:DOCX 页数:14 大小:269.04KB
下载 相关 举报
四年级数学上册 第一单元教案人教新课标版.docx_第1页
第1页 / 共14页
四年级数学上册 第一单元教案人教新课标版.docx_第2页
第2页 / 共14页
四年级数学上册 第一单元教案人教新课标版.docx_第3页
第3页 / 共14页
四年级数学上册 第一单元教案人教新课标版.docx_第4页
第4页 / 共14页
四年级数学上册 第一单元教案人教新课标版.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

四年级数学上册 第一单元教案人教新课标版.docx

《四年级数学上册 第一单元教案人教新课标版.docx》由会员分享,可在线阅读,更多相关《四年级数学上册 第一单元教案人教新课标版.docx(14页珍藏版)》请在冰豆网上搜索。

四年级数学上册 第一单元教案人教新课标版.docx

四年级数学上册第一单元教案人教新课标版

2019-2020年四年级数学上册第一单元教案人教新课标版

第一课时

教学内容:

P4、例1、例2(只含有同一级运算的混合运算)

教学目标:

1.使学生进一步掌握含有同一级运算的运算顺序。

2.让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法。

3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。

教学过程:

一、主题图引入

观察主题图,根据条件提出问题。

(1)说一说图中的人们在干什么?

“冰雪天地”分成几个活动区?

每个区有多少人?

你是怎么知道的?

组织学生提问并对简单地问题直接解答。

(2)根据图中提出的信息,你能提出哪些问题,怎样解决?

通过补充条件,继续提问。

1.滑冰场上午有72人,中午有44人离去,又有85人到来。

现在有多少人在滑冰?

2.“冰雪天地”3天接待987人。

照这样计算,6天预计接待多少人?

等等。

先小组交流,再全班交流。

提示学生可以自己进行条件的补充。

二、新授

1.小组4人对黑板上的题目进行分配解答。

引导学生对黑板上的问题进行解答,请学生在练习本上列出综合算式并进行脱式计算。

2.小组内互相说说你是怎样解答的?

教师巡视并对学生的叙述进行指导。

3.全班汇报:

组织全班同学进行汇报,并且互相补充,注意每步表示的意义的叙述。

(1)71-44+85

=27+85

=113(人)

71-44表示中午44人离去后还剩多少人,在加上到来的85人,就是现在滑冰场有多少人。

(2)987÷3×66÷3×987

=329×6=2×987

=1974(人)=1974(人)

第一种方法中,987÷3算出了1天“冰雪天地”接待的人数,在乘6算出6天接待的总人数。

(实际上就是原来学习的乘除混合应用题,不知道单一量的情况下求总量,一般都是乘除混合应用题。

第二种方法,因为是照这样计算,那么每天接待的人数可以看作是一样多的,就可以先算出6天是3天的几倍,6天接待的总人数也是3天接待的总人数的几倍。

就可以直接用3天的987人数去乘算出来的2倍。

等等。

引导学生进一步理解“照这样计算”的意思。

强调:

可用线段图帮助理解。

教师要注意这种方法的叙述,方法不要求全体学生都掌握,主要掌握运算顺序。

4.巩固练习

(1)根据老师提供的情景编题。

A加减混合。

乘车时的上下车问题,图书馆的借书还书问题,B速度、单价、工作效率。

先个人编题,再两人交换。

小组合作,减少重复练习。

(2)P5/做一做1、2

三、小结

学生就本节课的学习内容进行汇报。

这节课我们解决了很多问题,你们都有什么收获?

教师根据学生的回报选择性地板书。

(尤其是关于运算顺序的)

运算顺序为已有知识基础,让学生进行回忆概括。

四、作业

P81—4

 

板书设计:

四则运算

(一)

1.滑冰场上午有72人,中午有44人离去,2.“冰雪天地”3天接待987人。

照这

又有85人到来。

现在有多少人在滑冰?

样计算,6天预计接待多少人?

72-44+85

(1)987÷3×6

(2)6÷3×987

=27+85=329×6=2×987

=113(人)=1974(人)=1974(人)

运算顺序:

在没有括号的算式里,如果只有加、减法

或者只有乘、除法,都要从左往右按顺序计算。

 

第二课时

教学内容:

P6例3、P10例4(含有两级运算或有括号的混合运算)

教学目标:

1.使学生进一步掌握含有两级运算的运算顺序。

2.让学生经历探索和交流解决实际问题的过程,感受解决问题的一些策略和方法,

学会用两步计算的方法解决一些实际问题。

3.使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。

教学过程:

一、主题图引入

观察主题图,找出条件,提出问题。

引导学生观察主题图。

从图中你们都看到了什么?

能提出什么数学问题?

二、新授

就学生提出的问题,出示例3星期天,爸爸妈妈带着玲玲去“冰雪天地”游玩,购买门票需要花多少钱?

学生在练习本上解答此问题。

同桌两人说说自己是怎样解答的。

汇报:

教师根据学生的汇报进行板书。

(1)24+24+24÷2

=24+24+12

=48+12

=60(元)

24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。

两张成人票加上一张儿童票就是他们购买门票需要多少钱。

(2)24×2+24÷2

=48+12

=60(元)

24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。

我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点?

这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。

这样的综合算式的运算顺序是什么?

学生总结运算顺序。

买3张成人票,付100元,应找回多少钱?

等等。

出示例4上午冰雕区有游人180位,下午有270位。

如果每30位游人需要一名保洁员,下午要比上午多派几名保洁员?

小组讨论,独立完成。

小组内互相说说你是怎样解答的?

汇报。

(1)270÷30-180÷30

=9-6

=3(名)

270÷30算出上午需要派几名保洁员;180÷30算出下午需要派几名保洁员,然后再用减法计算出下午比上午需要多派几名保洁员。

(2)(270-180)÷30

=90÷30

=3(名)

270-180算出下午比上午多出游人多少人,再除以30就算出了下午要比上午多派几名保洁员。

引导学生观察两个算是的不同点,以及运算顺序的不同。

学生进行小结。

教师根据学生的小结进行板书。

三、巩固练习

P7做一做1、2题

P11做一做(完成书上的后,可以变化条件,如“买2副手套”等等。

教师在练习的过程中应抓住学生的关键语言进行知识的巩固。

四、作业

P8—95—9题

板书设计:

四则运算

(二)

星期天,爸爸妈妈带着玲玲去“冰雪上午冰雕区有游人180位,下午有270位。

天地”游玩,购买门票需要花多少钱?

如果每30位游人需要一名保洁员,下午要

(1)24+24+24÷2

(2)24×2+24÷2比上午多派几名保洁员?

=24+24+12=48+12

(1)270÷30-180÷30

(2)(270-180)÷30

=48+12=60(元)=9-6=90÷30

=60(元)=3(名)=3(名)

运算顺序:

在没有括号的算式里,有乘、运算顺序:

算式里有括号,要先算括号里

除法和加、减法,要先算乘、除法。

面的。

 

第三课时

教学内容:

P11例5(强化小括号的作用)、归纳运算顺序

教学目标;

1.使学生进一步掌握含有两级运算的运算顺序,正确计算三步式题。

2.在学生的头脑中强化小括号的作用。

3.在练习中总结归纳出四则混合运算的顺序。

教学过程:

一、复习引入

回忆前两节课的学习内容,回顾学习过的四则运算顺序。

前面我们学习了几种不同的四则运算,你们还记得吗?

谁能说说你在前面都学会了哪些四则运算顺序?

根据学生的回答进行板书。

二、新授

出示例5

(1)42+6×(12-4)

(2)42+6×12-4

学生在练习本上独立解答。

(画出顺序线)

两名学生板演。

全班学生进行检验。

上面的两道题数字、符号以及数字的顺序都没有改变,为什么两题的计算结果却不一样?

这几天我们一直都在说“四则运算”,到底什么是四则运算呢?

学生针对问题发表自己的意见。

概括:

加法、减法、乘法和除法统称四则运算。

(板书)

谁能把我们学习的四则运算的运算顺序帮我们大家来总结一下?

学生自由回答。

三、巩固练习

P12做一做1、2P144

教师巡视纠正。

四、作业

P14—152、3、5—7题

板书设计:

四则运算(三)

(1)42+6×(12-4)

(2)42+6×12-4运算顺序:

=42+6×8=42+72-4

(1)在没有括号的算式里,如果

=42+48=114-4只有加、减法或者只有乘、除法,都

=90=110要从左往右按顺序计算。

(2)在没有括号的算式里,有乘、

除法和加、减法,要先算乘、除法。

(3)算式里有括号的,要先算括

号里面的。

加法、减法、乘法和除法统称四则运算。

第四课时

教学内容:

P13例6(0的运算)

教学目的:

使学生掌握关于0的运算应该注意的问题。

教学重、难点:

0不能做除数及原因。

教学过程:

一、口算引入

快速口算

出示:

(1)100+0=

(2)0+568=(3)0×78=

(4)154-0=(5)0÷23=(6)128-128=

(7)0÷76=(8)235+0=(9)99-0=

(10)49-49=(11)0+319=(12)0×29=

二、新授

将上面的口算进行分类

请你们根据分类的结果说一说关于0的运算都有哪些。

学生分类后进行概括总结关于0的运算。

教师根据学生的回答进行板书。

关于0的运算你还有什么想问的或想说的吗?

学生提出0是否可以做除数。

小组讨论:

0能否做除数?

全班辩论。

各自讲明自己的理由。

教师小结:

0不能做除数。

如5÷0不可能得到商,因为找不到一个数同0相乘得到5.0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。

三、小结

学生小结关于0的运算应该注意的问题。

教师引导学生小结。

四、作业

P15—168—13题

板书设计:

关于“0”的运算

100+0=100235+0=235一个数加上0,还得原数。

0能否做除数?

0+319=3190+568=5680不能做除数。

99-0=99154-0=154一个数减去0,还得这个数。

0×29=00×78=0一个数乘0或0乘一个数,还得0。

0÷76=00÷23=00除以一个非0的数,,还得0。

49-49=0128-128=0被减数等于减数,差是0。

附送:

2019-2020年四年级数学上册第七单元正负数教案北师大版

【学习主题】在情境中体会正数和负数的意义,理解正数、0、负数三者之间的关系,运用正、负数表示生活中具有相反意义的量。

【定向导学·互动展示·当堂反馈】

课堂

元素

自研自探·环节

合作探究·环节

展示表现·环节

自学指导

(内容·学法·时间)

互动策略

(内容·形式·时间)

展示方案

(内容·方式·时间)

【温故知新】                                                      

·—2℃表示什么?

·把6℃、-2℃、9℃、-15℃、0℃、2℃这些温度从高到低排列

·上一课的学习知道了温度有零上温度和零下温度,还有零度。

 

【“+”、“-”表示的意义】

Ø自学课本86页看一看说一说中的四幅图,其中用了几种表示方法?

Ø比较这些数据,你发现了什么规律?

(提示:

“+”、“-”表示的意义)

 

【认识正负数】

1、分别举例说说怎么样的数是正数和负数;正数、负数分别有多少个?

 

2、“0”是正数还是负数呢?

3、读一读、分一分

+60,0,-100,+6,-8,+38,-21,+3,+66

 分成几类?

4、什么是整数,它与正数、负数和0三者之间有什么关系?

5、举例:

生活中运用正负数的例子(至少两个)

 

6、了解正负数的历史(书本87页“你知道吗”)

 

自学评价:

()☆

师友小对子:

交流与分享

·自学成果等级认定

·帮扶检测:

①记录数据的表示方法

②“+”、“-”表示的意义

③正负数的理解

检测型展示

导师就两人小对子的交流合作成果,进行双基检效性展示。

☆图中数据用了几种表示方法

☆“+”、“-”表示怎样的意义(可借助例子)

☆正数、负数的理解

学习共同体

分工与预展

科研组长就本组学情将本组分为:

板书组:

结合展示方案,规划版面。

预展组:

针对规划的板书内容做好组内小展示。

过关组:

过关“双基”内容。

方式与方法:

1、在组长的主持下确定好需要展示的题目;

2、确定好本组所拓展的题目;

3、进行展示任务分工,做好展示前的准备。

主题型展示

各小组展示自己的学习收获,其他小组注意倾听,及时补充纠正。

 

方法与形式:

第一步:

“+”、“-”表示怎样的意义(可借助例子)

第二步:

举例说说什么是正数、负数

第三步:

给定数的分类

第四步:

整数的理解,以及它与正数、0、负数三者之间的关系

第五步:

生活中运用正负数的例子

当堂反馈

总结归纳环节潜能生暴露—优生修正帮扶—教师点化提升

反馈型展示:

三层级能力达标反馈题自评:

师评

基础题:

 

2、填空。

(1)、如果下降5米,记作-5米,那么上升4米记作()米;如果+2千克表示增加2千克,那么-3千克表示()。

(2)、二月份,妈妈在银行存入5000元,存折上应记作()元。

三月一日妈妈又取出1000元,存折上应记作()元。

(3)、+8读作(),-13读作()。

(4)、海平面的海拔高度记作0m,海拔高度为+450米,表示(),海拔高度为-102米,表示()。

5、如果把平均成绩记为0分,+9分表示比平均成绩(),-18分表示(),比平均成绩少2分,记作()。

 

发展题:

 

提高题:

张明和王伟两人做游戏,赢一场得1分,输一场得-1分。

现在张明得3分,王伟得-3分,王伟要赢得几场比赛才可以把分数追平?

【培辅课】(附培辅单)疑惑告知:

效果描述:

【反思课】:

今日心得:

今日不足:

【教师寄语】新课堂,我展示,我快乐,我成功………今天你展示了吗!

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 交通运输

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1