高中必修四向量知识点总结及高考题型总结.docx

上传人:b****8 文档编号:23791391 上传时间:2023-05-20 格式:DOCX 页数:23 大小:56.64KB
下载 相关 举报
高中必修四向量知识点总结及高考题型总结.docx_第1页
第1页 / 共23页
高中必修四向量知识点总结及高考题型总结.docx_第2页
第2页 / 共23页
高中必修四向量知识点总结及高考题型总结.docx_第3页
第3页 / 共23页
高中必修四向量知识点总结及高考题型总结.docx_第4页
第4页 / 共23页
高中必修四向量知识点总结及高考题型总结.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

高中必修四向量知识点总结及高考题型总结.docx

《高中必修四向量知识点总结及高考题型总结.docx》由会员分享,可在线阅读,更多相关《高中必修四向量知识点总结及高考题型总结.docx(23页珍藏版)》请在冰豆网上搜索。

高中必修四向量知识点总结及高考题型总结.docx

高中必修四向量知识点总结及高考题型总结

向量的知识点与高考应用及题型融合

一,向量重要结论

(1、向量的数量积定义:

||||cosababθ⋅=规定00a⋅=,22||aaaa⋅==

(2、向量夹角公式:

a与b的夹角为θ,则cos||||

ababθ⋅=(3、向量共线的充要条件:

b与非零向量a共线⇔存在惟一的Rλ∈,使baλ=。

(4、两向量平行的充要条件:

向量11(,axy=,22(,bxy=平行⇔12210xyxy-=

(5、两向量垂直的充要条件:

向量ab⊥0ab⇔⋅=⇔12120xxyy+=

(6、向量不等式:

||||||abab+≥+,||||||abab≥⋅

(7、向量的坐标运算:

向量11(,axy=,22(,bxy=,则ab⋅=1212xxyy+

(8、向量的投影:

︱b︱cosθ=||aba⋅∈R,称为向量b在a方向上的投影投影的绝对值称为射影(9、向量:

既有大小又有方向的量。

向量不能比较大小,但向量的模可以比较大小。

相等向量:

长度相等且

方向相同的向量。

(10、零向量:

长度为0的向量,记为0,其方向是任意的,0与任意向量平行零向量a=0⇔|a|=0由

于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别

(11、单位向量:

模为1个单位长度的向量向量0a为单位向量⇔|

0a|=1

(12、平行向量(共线向量:

方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a∥b由于向量可以进行任意的平移(即自由向量,平行向量总可以平移到同一直线上,故平行向量也称为共线向量注:

解析几何与向量综合时可能出现的向量内容:

(1给出直线的方向向量(ku,1=或(nmu,=,要会求出直线的斜率;

(2给出+与AB相交,等于已知OBOA+过AB的中点;(3给出0=+PNPM,等于已知P是MN的中点;

(4给出(

+=+λ,等于已知QP,与AB的中点三点共线;(5给出以下情形之一:

①ACAB//;②存在实数,ABAC

λλ=使;③若存在实数,,1,OCOAOBαβαβαβ+==+且使,等于已知CBA,,三点共线.

(6给出λλ++=1OP,等于已知P是AB的定比分点,λ为定比,即λ=(7给出0=⋅MBMA,等于已知MBMA⊥,即AMB∠是直角,给出0<=⋅m,等于已知AMB

∠是钝角,给出0>=⋅mMBMA,等于已知

AMB∠是锐角。

(8

给出=⎪⎫⎛+λ,等于已知MP是AMB∠的平分线/(9在平行四边形ABCD中,给出0((=-⋅+,等于已知ABCD是菱形;

(10在平行四边形ABCD中,给出||||ABADABAD+=-,等于已知ABCD是矩形;

(11在ABC∆中,给出222==,等于已知O是ABC∆的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点;(12在ABC∆中,给出0=++OCOBOA,等于已知O是ABC∆的重心(三角形的重心是三角形三条

中线的交点;

(13在ABC∆中,给出OAOCOC

OBOBOA⋅=⋅=⋅,等于已知O是ABC∆的垂心(三角形的垂心是三角形三条高的交点;

(14在ABC∆中,给出+=OAOP(||||

ABACABACλ+(+∈Rλ等于已知通过ABC∆的内心;(15在ABC∆中,给出=⋅+⋅+⋅cba等于已知O是ABC∆的内心(三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点;

(16在ABC∆中,给出(12

ADABAC=+,等于已知AD是ABC∆中BC边的中线。

(17如果21,ee是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:

2211eeaλλ+=,其中不共线的向量21,ee叫做表示这一平面内所有向量的一组基底(18向量平行与直线平行有区别,直线平行不包括共线(即重合,而向量平行则包括共线(重合的情况

(19向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关(201.结合律不成立:

((

abcabc⋅⋅≠⋅⋅;

2.消去律不成立abac⋅=⋅不能得到bc=⋅

3.ab

⋅=0不能得到a=0或b=0

1、向量与三角函数的结合

向量与三角函数结合,题目新颖而精巧,既符合在知识的“交汇处”构题,又加强了对双基的考查

1.(江西18.已知向量

xfxxxx⋅=-+=+=(,4

2tan(,42sin(2(,42tan(,2cos2(令πππ.是否存在实数?

(((0((],,0[的导函数是其中使xfxfxfxfx'='+∈π若存在,则求出x的值;若不存在,则证明之.解:

4

2tan(42tan(42sin(2cos

22(πππ-+++=⋅=xxxxxf12cos22cos2sin22

tan112tan2tan12tan12cos222sin22(2cos222-+=+-⋅-+++=xxxxxxxxxx.cossinxx+=x

xxxxfxfxfxfsincoscossin((:

0((-++='+='+即令.0cos2==x

.

0((],,0[2,2='+∈==xfxfxx使所以存在实数可得ππ

π

2.已知向量(cos,sinmθθ=和((2sin,cos,,2nθθθππ=-∈,且825mn+=求cos28θπ⎛⎫+⎪⎝⎭的值.分析:

考查知识点:

(三角和向量相结合

解:

(cossinsinmnθθθθ+=-+(cosmn+=

由已知82mn+=,得7cos425πθ⎛⎫+=⎪⎝

⎭又2cos2cos(1428πθπθ⎛⎫+=+-⎪⎝⎭216cos(

2825θπ+=∴(,2θππ∈∴598288

πθππ<+<∴cos028θπ⎛⎫+<⎪⎝⎭

∴4cos285θπ⎛⎫+=-⎪⎝⎭3.(2009上海卷文(本题满分14分本题共有2个小题,第1小题满分6分,第2小题满分8分.已知ΔABC的角A、B、C所对的边分别是a、b、c,设向量(,mab=,

(sin,sinBA=,(2,2pba=--.

(1若m//n,求证:

ΔABC为等腰三角形;

(2若m⊥p,边长c=2,角C=ΔABC的面积.证明:

(1//,sinsin,mnaAbB∴=uvvQ即22ababRR

⋅=⋅,其中R是三角形ABC外接圆半径,ab=

ABC∴∆为等腰三角形

解(2由题意可知//0,(2(20mpabba=-+-=uvuv即abab∴+=由余弦定理可知,222

4(3abababab=+-=+-2(340abab--=即

4(1

abab∴==-舍去11

sin4sin223

SabCπ∴==⋅⋅=2、与函数的结合

向量与函数的结合,是以向量为载体来考查函数,所以本质上仍然是函数题

4.已知集合M={1,2,3},N={1,2,3,4}.定义函数

3(,3(,2(,2(,1(,1(.:

fCfBfANMf若点→若三角形ABC的外接圆圆心为D,且(R∈=+λλ则满足条件的函数f(x有(

A6个

B10个

C12个

D16个

5.(湖北理17.已知向量baxftxbxxa⋅=-=+=(,,1(,1,(2若函数在区间(-1,1上是增函数,求t

的取值范围.

分析:

本小题主要考查平面向量数量积的计算方法、利用导数研究函数的单调性,以及运用基本函数的性质分析

和解决问题的能力。

解法1:

依定义,1(1((232ttxxxxtxxxf+++-=++-=

.23(2txxxf++-='则

.0(1,1(,1,1((≥'--xfxf上可设则在上是增函数在若

3

1(,

23(,1,1(,230(22=-=--≥⇔≥'∴xxgxxxgxxtxf的图象是对称轴为由于考虑函数上恒成立在区间开口向上的抛物线,故要使xxt232

-≥在区间(-1,1上恒成立⇔.5,1(≥-≥tgt即.1,1((,0(1,1((,5上是增函数在即上满足在时而当->'-'≥xfxfxft

5≥tt的取值范围是故.

解法2:

依定义,1(1((2

32ttxxxxtxxxf+++-=++-=.

0(1,1(,1,1((.

23(2≥'--++-='xfxftxxxf上可设则在上是增函数在若

(xf'的图象是开口向下的抛物线,时且当且仅当051(,011(≥-=-'≥-='∴tftf

.5.

1,1((,0(1,1((≥->'-'ttxfxfxf的取值范围是故上是增函数在即上满足在

3、与解析几何的结合

平面向量与解析几何结合通常涉及到夹角、平行、垂直、共线、轨迹等问题的处理,目标是将几何问题坐标化、符号化、数量化,从而将推理转化为运算

6.已知双曲线2

2

12

yx-=的焦点为F1、F2,点M在双曲线上且120,MFMF⋅=则点M到x轴的距离为(C(A43(B53(C

3(D

7.已知两点M(-2,0、N(2,0,点P

0=⋅+,则动点P

(x,y的轨迹方程为(B(Axy82=(Bxy82-=(Cxy42=(Dxy42-=

8.已知点A(-2,0,B(3,0,动点P(x,y满足2xPBPA=⋅,则点P的轨迹是(D

A.圆

B.椭圆

C.双曲线

D.抛物线

[点评]此题考查轨迹方程和向量的基本运算等知识,属于较简单的题.

9.(2009全国卷Ⅰ理已知椭圆2

2:

12

xCy+=的右焦点为F,右准线为l,点Al∈,线段AF交C于点B,若3FAFB=,则||AF=

解:

过点B作BMl⊥于M,并设右准线l与X轴的交点为N,易知FN=1.由题意3FAFB=,故2||3BM=.又由椭圆

的第二定义,得2||233BF==||AF=故选A10.(2009浙江理过双曲线22

221(0,0xyabab

-=>>的右顶点A作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,BC.若12ABBC=,则双曲线的离心率是(

ABCD答案:

C

【解析】对于(,0Aa,则直线方程为0xya

+-=,直线与两渐近线的交点为B,C,22,,(,aabaabBCabababab⎛⎫-⎪++--⎝⎭

则有22222222(,,,ababababBCABabababab⎛⎫=-=-⎪--++⎝⎭

因222,4,ABBCabe=∴=∴=

11.(2009浙江文已知椭圆22

221(0xyabab

+=>>的左焦点为F,右顶点为A,点B在椭圆上,且BFx⊥轴,直线AB交y轴于点P.若2APPB=,则椭圆的离心率是(

ABC.13D.12D【命题意图】对于对解析几何中与平面向量结合的考查,既体现了几何与向量的交汇,也体现了数形结合的巧妙应用.

【解析】对于椭圆,因为2APPB=,则1

2,2,2OAOFace=∴=∴=

12.(2009四川卷文已知双曲线0(1222

2>=-bb

yx的左、右焦点分别是1F、2F,其一条渐近线方程为xy=,点,3(0yP在双曲线上.则1PF·2PF=

A.-12

B.-2

C.0

D.4【答案】C

【考点定位】本小题考查双曲线的渐近线方程、双曲线的定义,基础题。

(同文8解析:

由题知22

=b,故0,2(,0,2(,123210FFy-±=-±=,∴01431,32(1,32(21=+-=±-∙±--=∙PFPF,故选择C。

解析2:

根据双曲线渐近线方程可求出双曲线方程

22

122

xy-=,则左、右焦点坐标分别为12(2,0,(2,0FF-,

再将点0Py

代入方程可求出1P±,则可得120PFPF⋅=,故选C。

13.(2009全国卷Ⅱ理已知双曲线(22

2210,0xyCabab

-=>>:

的右焦点为F,过F

C于

AB、两点,若4AFFB=,则C的离心率为

A.

65B.75C.58D.95

解:

设双曲线22

221xyCab

-=:

的右准线为l,过AB、分别

AMl⊥于M,BNl⊥于N,BDAMD⊥于,由直

线AB的斜

知直线

AB的倾斜角为

1

6060,||||2

BADADAB︒∴∠=︒=

线

1||||||(||||AMBNADAFFBe-==-11

||(||||22ABAFFB==+.

又156

43||||25

AFFBFBFBee=∴⋅=∴=故选A

14.(2009年上海卷理已知1F、2F是椭圆1:

22

22=+b

yaxC(a>b>0的两个焦点,P为椭圆C上一点,

且21PFPF⊥.若21FPF

∆的面积为9,则b=____________.【答案】3【解析】依题意,有⎪⎩

⎨⎧=+=∙=+2222121214||||18||||2||||cPFPFPFPFa

PFPF,可得4c2+36=4a2,即a2-c2=9,故有b=3。

15.已知椭圆22

221xyab

+=(a>b>0上总存在点P,使120PFPF⋅=,其中F1,F2是椭圆的焦点,

那么该椭圆离心率的取

值范围是⎫

⎪⎪⎣⎭

[点评]此题借助向量语言给出12PFPF和的垂直关系,重点考查椭圆的几何性质.

向量与解析解答题

16.已知ji,是x,y轴正方向的单位向量,设a

=jyix+-3(,b=jyix++3(,且满足|a

|+|b|=4.

(1求点P(x,y的轨迹C的方程.

(2如果过点Q(0,m且方向向量为c

=(1,1的直线l与点P的轨迹交于A,B两点,当∆AOB的面积取到最大值时,求m的值。

解:

(1a=jyix+-3(,|b|=jyix++3(,且|a

|+|b|=4.

∴点P(x,y到点(3,0,(-3,0的距离这和为4,故点P的轨迹方程为14

22=+yx(2设A(11,yx,B(22,yx依题意直线AB的方程为y=x+m.代入椭圆方程,得

0448522=-++mmxx,则1x+2x=-5

8m,1x∙2x=1(254

-m因此,225

22

1

5(mmdABSAOB-=

=∆

当225mm=-时,即m=2

10±

时,1max=S

[变式1]已知ji,是x,y轴正方向的单位向量,设a

=jyix+-3(,b=jyix++3(,且满足

||a|-|b

||=2.求点P(x,y的轨迹C的方程.(轨迹为双曲线

[变式2]已知ji,是x,y轴正方向的单位向量,设a

=jyix+-3(,b=jyix++3(,且满足b∙i=|a

|.求点P(x,y的轨迹C的方程.

[提示:

设K(-3,0,F(3,0,则b∙i

表示在x轴上射影,即点P到x=-3的距离,所以点P到定点F的距离与到定直线x=-3的距离比为1,故点P的轨迹是以(3,0为焦点以x=-3为准线抛物线]

[变式3]已知ji,是x,y轴正方向的单位向量,设a

=jyix+-3(,b=jyix++3(,且满足b∙i=λ|a

|.求点P(x,y的轨迹C的方程.

[提示:

设K(-3,0,F(3,0,则b∙i

表示在x轴上射影,即点P到x=-3的距离,所

以点P到定点F的距离与到定直线x=-3的距离比为λ1=∙iba

当110<<λ时,点P的轨迹是

以(3,0为焦点,以x=-3为相应准线的椭圆;当11>λ

时,点P的轨迹是以(3,0为焦点,

以x=-3为相应准线的双曲线的右支;若想得到双曲线的双支λ应满足什么条件?

]

[变式4]已知平面上两定点K、F,P为一动点,满足,KFKP

∙=求点P(x,y的轨迹C的方程.(以F焦点,过K且垂直于KF的直线为准线的抛物线

[变式5]已知平面上两定点K、F,P为一动点,满足,

∙=.求点P(x,y的轨迹C的方程.(以F焦点,过K且垂直于KF的直线为准线的圆锥曲线。

17.已知点A(22-,0,B(2-,0动点P满足||||2⋅=⋅

(1若动点P的轨迹记作曲线C1,求曲线C1的方程.(2已知曲线C1交y轴正半轴于点Q,过点D(0,3

2

-

作斜率为k的直线交曲线C1于M、N点,求证:

无论k如何变化,以MN为直径的圆过点Q.

解:

(1设P(x,y,则有,22(yx+=0,2(=,2(yx+=∵||||2BPABABAP⋅⋅=

⋅∴222(2242yxx++⋅⋅=+

得:

4222=+yx

(2由12422=+yx得Q(0,2设直线C的方程为y=kx-3

2

代入x2+2y2=4得(1+2k2x209

32

324=--

kx设M(x1,y1N(x2,y22,(,2,(2211-=-=yxQNyxQM∵2

211(324k

k

xx+=

+21(932221kxx+-=⋅又∵324(121-

+=⋅kxxx3

24(2-kx=09

3221(32432421

1(932

932(3241(222212

21=++⋅-++-=++-+kkkkkxxkkxx∴QNQM⊥∴点Q在以MN为直径的圆上.

[变式1]已知ji,是x,y轴正方向的单位向量,设a

=jyix+-3(,b=jyix++3(,且满足

|a+b

|=4..求点P(x,y的轨迹C的方程.(OPBPAP2=+,点P轨迹为圆,其中A(3,0,B(-

3,0

[变式2]已知ji,是x,y轴正方向的单位向量,设a

=jyix+-3(,b=jyix++3(,且满足

a∙b

=6.求点P(x,y的轨迹C的方程.(轨迹为圆

18设椭圆方程为22

14

yx+

=,过点M(0,1的直线l交椭圆于A,B,O是坐标原点,点P满足(

1

2OPOAOB=+,点N的坐标为11,22⎛⎫

⎪⎝⎭

.当l绕点M旋转时,求(1动点P的轨迹方程;(2NP的最大值和最小值.[解析]⑴设:

1lykx=+,代入2

2

14

yx+=中消y得(224230kxkx++-=.设((1122,,,,AxyBxy则(121212

22

28

244kxxyykxxkk+=-+=++=++(

12122214,,22

244xxyykOPOAOBkk++⎛⎫⎛

⎫∴=

+==-⎪⎪++⎝⎭⎝⎭设(,Pxy,则2

2444kxkyk⎧

=-⎪⎪+⎨⎪=⎪+⎩

消k得2240xyy+-=

当k不存在时,AB中点为(0,0,满足上述方程.所以P点轨迹方程是22

40xyy+-=.

⑵由P点轨迹方程知2

111

1644

xx≤

∴-≤≤

7||2

NPx⎛

=+

所以,当14x=

时,min1||4NP

=

;当16x=-时,max||6

NP=.[点评]此题主要考查平面向量的基本运算、直线和圆锥曲线相交问题、轨迹方程的求法和应用、配方法求函数的

最值等基本知识,考查了解析几何的基本思想和综合解题能力.19.【文】,82,(,2,(=+-=+=yxyx

(Ⅰ求M(yx,的轨迹C

;

(Ⅱ

过点(0,3作直线l与曲线交于A,B两点,+=,是否存在直线l使OAPB为矩形.解:

(Ⅰ88ab+=⇒设12(0,2,(0,2FF-,则128MFMF+=

因此,点M的轨迹是以12FF、为焦点,长轴长为8的椭圆,其方程为22

11216

xy+=

(Ⅱ假设存在这样的直线,使得OAPB为矩形,并设:

3lykx=+与椭圆方程联立得:

22(3418210(*kxkx++-=设1122(,,(,AxyBxy,则12xx、是(*的两根,且1212

221821

3434

kxxxxkk+=-

=-++因为OAPB为矩形,故OBOA⊥

则02121=+yyxx,((0332121=+++kxkxxx

(093121212

=++++xxkxxk

由此可得:

094

31834312122

2

2=++⨯-++-kkkk

解得:

2516

kk=

∴=

因此,当直线的斜率为OAPB为矩形.20【文】在平面直角坐标系中,O为坐标原点,已知点(1,3M-,(5,1N,若点C满足

(1(OCtOMtONtR=+-∈,点C的轨迹与抛物线24yx=交于A、B两点;

(1求点C的轨迹方程;(2求证:

OAOB⊥;

(3在x轴正半轴上是否存在一定点(,0Pm,使得过点P的任意一条抛物线的弦的长度是原点到该弦中点距离的2倍,若存在,求出m的值;若不存在,请说明理由.

解:

(1设

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 职业规划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1