求约数个数的公式:
P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互质数:
如果两个数的最大公约数是1,这两个数叫做互质数。
小升初奥数知识点习题讲解(约数倍数)
在小升初奥数学习中约数与倍数有哪些基本性质需要大家掌握呢,一起来看看吧!
约数和倍数:
若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:
几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:
1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:
12的约数有1、2、3、4、6、12;
18的约数有:
1、2、3、6、9、18;
那么12和18的公约数有:
1、2、3、6;
那么12和18最大的公约数是:
6,记作(12,18)=6;
求最大公约数基本方法:
1、分解质因数法:
先分解质因数,然后把相同的因数连乘起来。
2、短除法:
先找公有的约数,然后相乘。
3、辗转相除法:
每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:
12、24、36、48……;
18的倍数有:
18、36、54、72……;
那么12和18的公倍数有:
36、72、108……;
那么12和18最小的公倍数是36,记作[12,18]=36;
最小公倍数的性质:
1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:
1、短除法求最小公倍数;2、分解质因数的方法
小升初奥数知识点习题讲解(归一问题)
本文要和大家分享的是归一问题的基本特点:
问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:
根据题目中的条件确定并求出单一量;
复合应用题中的某些问题,解题时需先根据已知条件,求出一个单位量的数值,如单位面积的产量、单位时间的工作量、单位物品的价格、单位时间所行的距离等等,然后,再根据题中的条件和问题求出结果。
这样的应用题就叫做归一问题,这种解题方法叫做“归一法”。
有些归一问题可以采取同类数量之间进行倍数比较的方法进行解答,这种方法叫做倍比法。
由上所述,解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
小升初奥数知识点习题讲解(盈亏问题)
在小升初奥数中盈亏问题问题的有一些基本的概念,解题思路和题型需要大家掌握。
盈亏问题
基本概念:
一定量的对象,按照某种标准分组,产生一种结果:
按照另一种标准分组,又产生一种结果,由于
分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.
基本思路:
先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.
基本题型:
①一次有余数,另一次不足;
基本公式:
总份数=(余数+不足数)÷两次每份数的差
②当两次都有余数;
基本公式:
总份数=(较大余数一较小余数)÷两次每份数的差
③当两次都不足;
基本公式:
总份数=(较大不足数一较小不足数)÷两次每份数的差
基本特点:
对象总量和总的组数是不变的。
关键问题:
确定对象总量和总的组数。
小升初奥数知识点习题讲解(简单方程)
在小升初奥数中简单方式有哪些概念需要大家了解和熟悉的呢?
又有哪些解题步骤是需要大家掌握的呢?
快来学习吧!
简单方程
代数式:
用运算符号(加减乘除)连接起来的字母或者数字。
方程:
含有未知数的等式叫方程。
列方程:
把两个或几个相等的代数式用等号连起来。
列方程关键问题:
用两个以上的不同代数式表示同一个数。
等式性质:
等式两边同时加上或减去一个数,等式不变;等式两边同时乘以或除以一个数(除0),等式不变。
移项:
把数或式子改变符号后从方程等号的一边移到另一边;
移项规则:
先移加减,后变乘除;先去大括号,再去中括号,最后去小括号。
加去括号规则:
在只有加减运算的算式里,如果括号前面是“+”号,则添、去括号,括号里面的运算符号都不变;如果括号前面是“-”号,添、去括号,括号里面的运算符号都要改变;括号里面的数前没有“+”或“-”的,都按有“+”处理。
移项关键问题:
运用等式的性质,移项规则,加、去括号规则。
乘法分配率:
a(b+c)=ab+ac
解方程步骤:
①去分母;②去括号;③移项;④合并同类项;⑤求解;
方程组:
几个二元一次方程组成的一组方程。
解方程组的步骤:
①消元;②按一元一次方程步骤。
消元的方法:
①加减消元;②代入消元。
小升初奥数知识点习题讲解(时钟问题)
本文要和大家探讨的是小升初奥数中的时钟问题,包括钟面追及和快慢表两个问题。
时钟问题—钟面追及
基本思路:
封闭曲线上的追及问题。
关键问题:
①确定分针与时针的初始位置;
②确定分针与时针的路程差;
基本方法:
①分格方法:
时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。
分针每小时走60分格,即一周;而时针只走5分格,故分针每分钟走1分格,时针每分钟走1/12分格。
②度数方法:
从角度观点看,钟面圆周一周是360°,分针每分钟转360/60度,即6°,时针每分钟转360/12*60度,即1/2度。
时钟问题—快慢表问题
基本思路:
1、按照行程问题中的思维方法解题;
2、不同的表当成速度不同的运动物体;
3、路程的单位是分格(表一周为60分格);
4、时间是标准表所经过的时间;
5、合理利用行程问题中的比例关系;
小升初奥数知识点习题讲解(几何面积)
在小升初奥数中几何面积问题的基本解题常用方法有哪些呢?
基本思路:
在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。
常用方法:
1.连辅助线方法
2.利用等底等高的两个三角形面积相等。
3.大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。
4.利用特殊规律
①等腰直角三角形,已知任意一条边都可求出面积。
(斜边的平方除以4等于等腰直角三角形的面积)
②梯形对角线连线后,两腰部分面积相等。
③圆的面积占外接正方形面积的78.5%。
小升初奥数知识点习题讲解(逻辑推理)
在小升初奥数中逻辑推理问题的基本方法有哪些呢?
基本方法简介:
①条件分析—假设法:
假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。
例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。
②条件分析—列表法:
当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。
列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。
③条件分析——图表法:
当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态。
例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。
④逻辑计算:
在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。
⑤简单归纳与推理:
根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。
小升初奥数知识点习题讲解(数的整除)
在小升初奥数中数的整除,有一些基本的概念和符合,以及一些整除判断方法需要大家了解掌握。
一、基本概念和符号:
1、整除:
如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:
整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”;
二、整除判断方法:
1.能被2、5整除:
末位上的数字能被2、5整除。
2.能被4、25整除:
末两位的数字所组成的数能被4、25整除。
3.能被8、125整除:
末三位的数字所组成的数能被8、125整除。
4.能被3、9整除:
各个数位上数字的和能被3、9整除。
5.能被7整除:
①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6.能被11整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7.能被13整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
三、整除的性质:
1.如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
2.如果a能被b整除,c是整数,那么a乘以c也能被b整除。
3.如果a能被b整除,b又能被c整除,那么a也能被c整除。
4.如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
小升初奥数知识点习题讲解(平均数问题)
在小升初奥数中平均数问题,有一些基本的公式和算法需要大家掌握,具体如下:
基本公式:
①平均数=总数量÷总份数
总数量=平均数×总份数
总份数=总数量÷平均数
②平均数=基准数+每一个数与基准数差的和÷总份数
基本算法:
①求出总数量以及总份数,利用基本公式①进行计算.
②基准数法:
根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②
小升初奥数知识点习题讲解(抽屉原理)
在小升初奥数中抽屉原理问题有哪些基本问题和基本特征需要大家了解和掌握呢?
快来学习吧!
抽屉原则一:
如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:
把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:
总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:
如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m]+1个物体:
当n不能被m整除时。
②k=n/m个物体:
当n能被m整除时。
理解知识点:
[X]表示不超过X的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:
构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
小升初奥数知识点习题讲解(周期循环数)
本文给大家介绍的是小升初奥数知识点中的周期循环与数表规律
周期现象:
事物在运动变化的过程中,某些特征有规律循环出现。
周期:
我们把连续两次出现所经过的时间叫周期。
关键问题:
确定循环周期。
闰年:
一年有366天;
①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;
平年:
一年有365天。
1份不能被4整除;②如果年份能被100整除,但不能被400整除;
2小升初奥数知识点习题讲解(加法原理)
3 在小升初奥数中加法原理问题有哪些基本问题和基本特征需要大家了解和掌握呢?
快来学习吧!
加法乘法原理和几何计数
4 加法原理:
如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:
m1+m2.......+mn种不同的方法。
5 关键问题:
确定工作的分类方法。
6 基本特征:
每一种方法都可完成任务。
7 乘法原理:
如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:
m1×m2.......×mn种不同的方法。
8 关键问题:
确定工作的完成步骤。
9 基本特征:
每一步只能完成任务的一部分。
10 直线:
一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。
11 直线特点:
没有端点,没有长度。
12 线段:
直线上任意两点间的距离。
这两点叫端点。
13 线段特点:
有两个端点,有长度。
14 射线:
把直线的一端无限延长。
15 射线特点: