春人教版六年级下册数学教案第6单元整理和复习.docx

上传人:b****7 文档编号:23601182 上传时间:2023-05-18 格式:DOCX 页数:84 大小:519.67KB
下载 相关 举报
春人教版六年级下册数学教案第6单元整理和复习.docx_第1页
第1页 / 共84页
春人教版六年级下册数学教案第6单元整理和复习.docx_第2页
第2页 / 共84页
春人教版六年级下册数学教案第6单元整理和复习.docx_第3页
第3页 / 共84页
春人教版六年级下册数学教案第6单元整理和复习.docx_第4页
第4页 / 共84页
春人教版六年级下册数学教案第6单元整理和复习.docx_第5页
第5页 / 共84页
点击查看更多>>
下载资源
资源描述

春人教版六年级下册数学教案第6单元整理和复习.docx

《春人教版六年级下册数学教案第6单元整理和复习.docx》由会员分享,可在线阅读,更多相关《春人教版六年级下册数学教案第6单元整理和复习.docx(84页珍藏版)》请在冰豆网上搜索。

春人教版六年级下册数学教案第6单元整理和复习.docx

春人教版六年级下册数学教案第6单元整理和复习

第6单元整理和复习

1.数与代数

第1课时数的认识

(1)

【教学目标】

使学生比较系统地掌握有关整数、分数、小数、百分数和负数的基础知识,进一步弄清概念间的联系和区别。

【教学重难点】

重难点:

1.使学生比较系统的掌握自然数和整数的基础知识。

2.弄清概念间的联系和区别。

【教学过程】

一、谈话导入

1.教师:

同学们,谁能说一说小学六年中我们都学过哪些数?

你能举出生活中利用这些数的例子吗?

说明每个数的具体含义。

请学生拿出课前收集的数据来汇报,指名在黑板上写下这些数。

其他同学注意倾听,听一听数读得是否正确,看一看黑板上的数写得对不对。

2.教师用课件出示一组数,弥补学生的不足。

(课件出示:

如:

珠穆朗玛峰高达8844.43m。

南极洲年平均气温只有-25℃。

今年我市空气质量达到良好的天数占全年的

这本词典有1722页。

一条围巾的成分:

羊毛40%、化纤60%。

3.把黑板上的数分一分类。

4.揭示课题。

同学们回答得很正确,这就是我们在小学阶段学习的几种数,这几节课我们就把这几种数的意义和有关知识进行整理和复习,我们今天先复习自然数和整数。

(板书课题:

数的认识)

二、归纳整理

自然数和整数。

1.教师提问:

什么样的数是自然数?

0表示什么?

有没有最小的自然数?

有没有最大的自然数?

2.教师提问:

谁知道我们学习的哪些数是整数?

学生回答后,教师提出问题:

能不能说整数就是自然数?

让学生想一想,议一议,说一说。

教师向学生说明:

我们小学阶段学习的整数,除了自然数,还学习了一些小于零的整数即负整数,这些负整数到中学要更深入的学习。

结合上面的复习和板书,将板书补充成如下形式:

3.小组整理数的其他知识。

提问:

关于数的知识你还知道哪些?

(1)学生自由发言。

(2)小组合作学习,重点讨论下面的问题。

(出示讨论题)

a.什么是十进制计数法?

b.你能说出哪些计数单位?

c.怎样比较两个数的大小?

根据学生的回答教师完成整数、小数的数位顺序表。

教师说明:

整数和小数都是按十进制计数法写出得数,其中个、十、百……以及十分之一、百分之一……都是计数单位。

各个计数单位所占的位置,叫做数位。

数位是按一定的顺序排列的。

练一练:

填空(口答)。

27046=2×()+7×()+0×()+4×()+6×()

说出4004.04这个数中的三个“4”分别在什么数位上,各表示什么,这个数中的三个“0”各起什么作用?

4.怎样比较两个数的大小?

举例说明。

引导学生从整数、小数、分数三个方面回答。

整数、小数的比较方法。

比较分数大小的方法,从同分母、同分子、异分母三个方面小结。

教师逐一指名回答。

分数和小数

1.组织学生分组活动,复习有关分数的知识。

2.每个小组选一个代表发言,展示整理和复习的结果。

教师结合各个小组整理和复习的情况,及时予以肯定和鼓励,并注意突出“分数的意义、分数单位和分数与除法的关系”,同时还可以做如下板书:

分数和除法的关系:

a÷b=

(b≠0)

3.通过直观图形,导入对小数意义的整理和复习。

4.教师提出以下问题,让学生分小组讨论。

(1)什么样的数可以用小数表示?

(2)小数和分数有什么关系?

(3)什么是循环小数?

循环小数可以怎样写?

小数是不是都小于1?

5.组织各小组对上面提出的问题发表看法,教师板书如下:

6.分数的基本性质和小数的基本性质有什么关系?

小数点移动位置,小数的大小会发生什么变化?

分别说出分数的基本性质、小数的基本性质的内容是什么?

举例说明。

板书:

0.1=0.10=0.100=……

=……

分数的基本性质和小数的基本性质有什么关系?

(因为小数可以看做分母是10、100、1000……的分数,所以小数的基本性质是分数的基本性质的特殊情况。

练习:

填空(口答)。

做一做,说一说。

引导学生说出小数点的位置移动,引出小数大小变化的规律。

下面这组数有什么特点?

他们有什么规律?

0.1081.0810.8108108

百分数

(1)教师指着黑板上的板书:

自然数、整数、分数、小数、百分数。

提问:

我们已整理复习了有关自然数、整数、分数、小数的知识,谁能说一说,这节课的学习任务已经完成了百分之几?

还有百分之几没有完成?

(2)结合刚才的回答,谁能说一说:

什么样的数叫做百分数?

(3)“一节课的任务已经完成了80%”也可以说“已经完成了

”,我们能不能因此就说百分数和分数的意义完全相同呢?

请同学们议一议:

百分数和分数有什么区别与联系?

结合学生的回答,教师板书:

百分数常用%来表示。

百分数只表示一个数是另一个数的百分之几,不表示具体的数量,百分数与分数的意义不完全相同。

(4)学生质疑,师生共同解疑。

三、课堂作业

教材73页第3~4题。

学生独立完成并在小组中相互交流,教师巡视并针对具体情况进行指导。

四、课堂小结

通过复习,请你们把自然数和整数的有关知识整理一下并在小组中交流。

【教学反思】

在复习数的意义时,学生对数已有一定的认识,教学时让学生理解自然数与整数及计数单位与数位等简单概念。

 

第6单元整理和复习

1.数与代数

第2课时数的认识

(2)

【教学目标】

进一步理解整除、因数、倍数、质数、合数等意义,能熟练地找出两个数的公因数、公倍数等

【教学重难点】

重难点:

1、熟练掌握2、3、5倍数的特征并正确解决有关问题。

2、弄清概念间的联系和区别。

【教学过程】

一、谈话导入

上一节课我们分析了数的组成和分类,今天我们来回忆下因数和倍数、质数和合数。

二、归纳整理

1、由“整除”这个基本概念引出有关概念。

举例说说什么叫整除,什么叫约数和倍数。

如24÷6=436÷12=3

24能被6整除36能被12整除

思考:

3÷2=1.56÷1.5=4这两个式是否表示整除关系?

为什么?

总结整除的概念:

进一步理解质数、合数、互质数、质因数、分解质因数的概念,以及它们之间的关系。

(把24、36分解质因数,通过分解来进一步理解上述概念)举例说说能被2、3、5整除数的特征,以及偶数与奇数。

2、提问:

非0自然数有几种常用的分类方法,分类的依据是什么?

学生边回答教师边板书:

非零自然数根据是不是2的倍数,分成偶数和奇数;根据所含因数的个数,分成质数和合数。

回答:

什么是奇数、偶数?

什么是质数、合数?

教师指名一一回答,并要求学生记住100以内质数表。

三、课堂作业

教材74~75页练习十四第2、5、6题。

学生独立完成并在小组中相互交流,教师巡视并针对具体情况进行指导。

四、课堂小结

通过复习,请你们把分数和小数的有关知识整理一下并在小组中交流。

【教学反思】

在设计这节复习课时,先指导学生对本单元的知识进行了整理,多数学生整理的都比较完整,说明学生已形成了总结能力。

学生掌握了本单元的知识结构后,还要强化教材的重点。

 

第6单元整理和复习

1.数与代数

第3课时数的运算

(1)

【教学目标】

1.归纳整理整数、小数、分数计算法则的异同点,进一步总结计算时应遵循的一般规律及四则运算中的一些特殊情况。

2.培养学生运用法则熟练计算的能力和对学过知识进行归纳整理、比较异同、形成知识结构的能力。

3.引导学生探索知识间的内在联系,认识事物本质。

【教学重难点】

重难点:

1.整理四则运算的意义及计算法则。

2.对四则运算法则本质的认识和理解。

【教学过程】

一、创设情境

(1)教师:

“六一”快到了。

同学们为欢庆“六一”在精心准备,瞧,有的折幸运星,有的做蝴蝶结,有的用彩带做中国结,还有的买来了矿泉水,真热闹,我们一起去看看吧!

(2)多媒体课件出示教师创设的问题情境。

如下所示:

(有条件的教师可通过这些问题创设情境图)

①同学们折了37颗红星,23颗蓝星,一共折了多少颗星?

②同学们买了40瓶矿泉水,每瓶0.9元,一共要付多少钱?

③有24m的彩带,用

做蝴蝶结,做蝴蝶结用去了多少米?

④有24米的彩带,用

做中国结。

做中国结用去了多少米?

教师组织学生分小组讨论这些问题。

(3)教师:

在解决问题中,你们使用了哪些运算?

学生可能说出:

加法、减法、乘法、除法。

二、复习讲授

1.复习整理四则运算的意义。

(1)学生自己编题并列式回答。

(写在练习本上)

(2)小组合作学习,教师要求小组同学互相补充纠正编题和列式出现的错误。

说出运用了哪种运算,这种运算的意义是什么?

(3)小组汇报,其他同学注意补充纠正。

说说用到的每种运算的意义是什么?

教师板书

28+36=36-28=36÷28=28÷36=

0.9×40=40÷0.9=24×12=12÷24=

(4)根据同学们的回答,指名说说整数、小数、分数的哪些运算的意义相同?

哪些意义有扩展?

(5)你能用图示的形式表示出四则运算之间的关系吗?

师生总结:

2.整理四则运算的法则。

(1)复习加法和减法的法则。

①出示三道题,请学生分析错误的原因并改正。

学生观察后回答,指出错误分别是:

相同数位没有对齐,小数点没有对齐,没有通分。

②三条法则分别是怎样的?

(相同数位对齐,小数点对齐,分母相同时才能直接相加减。

③前两条法则的要求反映了一条什么样的共同规律?

能用一句话概括吗?

(相同数位上的数才能相加减。

(2)复习整数乘法和除法的法则。

①出示两道题:

对照下面两道题,口述整数乘法和除法的计算法则。

②把上面两道题改编成小数乘除法。

1.42×2.3,4.182÷1.23,让学生在整数计算的结果上确定小数点的位置。

③教师:

通过上面的计算,你们发现小数乘除法与整数乘除法有什么相同点和不同点?

(相同点:

小数乘除法先按整数乘除法法则计算,小数除法把小数转化成整数后,也按整数乘除法法则计算。

不同点:

小数乘除法还要在结果上确定小数点的位置。

(3)复习分数乘法和除法的法则。

①课件出示

指名说一说分数乘法和除法的计算方法是什么?

②分数乘法和除法在计算方法上又有什么相似点和不同点?

(相似点是分数除法要转化成分数乘法计算;不同点是分数除法转化后乘的是除数的倒数。

3.完成教材第76页的“做一做”。

计算后说一说计算时需要注意什么?

73.05-3.96(小数点对齐)

27.5×1.4(积是两位小数)

3.12÷15+4.71(0占位)

12.5×28-19.3(先乘法后减法)

(要先通分)

(转化成分数乘法一次性计算)

三、课堂小结

通过这节课的学习你又有哪些收获?

【教学反思】

1.四则运算的意义,在复习的时候,要加强理解,因为它是后面复习应用题的基础。

2.四则计算的运算法则,可以对比着复习,找出它们之间的异同,便于学生记忆。

 

第6单元整理和复习

1.数与代数

第4课时数的运算

(2)

【教学目标】

1.通过复习使学生熟练地掌握四则运算定律和性质,能应用运算定律进行简便运算。

2.能正确地掌握四则混合运算的运算顺序,并较熟练的进行计算。

3.通过探索运算定律的应用等数学活动,让学生体验数学的作用,培养学生的应用意识。

4.经历四则混合运算的简便过程,体验迁移的学习方法。

5.在学习活动中,体验数学知识之间的内在联系,感受数学的优化思想,培养学生观察发现和应用知识的能力。

【教学重难点】

重难点:

1.整理四则运算的运算顺序和运算定律。

2.能够准确灵活地选择简便方法。

【教学过程】

一、谈话导入

同学们,请你们回忆一下,我们学习了六年,已经学习了几级运算?

几种运算?

还记得混合运算的运算顺序和运算定律吗?

这节课,我们就来系统的复习一下吧。

二、复习讲授

1.复习四则运算的顺序:

课件出示:

5400-2940÷28×27

教师:

这是两道四则混合运算的题,说说这两道计算题的运算顺序是什么?

谁能说说四则混合运算的运算顺序是什么?

根据学生的回答板书:

2.复习简便运算:

课件出示:

3.87+2.9975.2-19.8

10.47-5.68-1.325.39-2.88-1.39

4.37+

+0.63+

1.25×72

38×56+44×3894×101

提问:

把简算的式题进行分类,怎么分?

学生分类后汇报,说一说为什么这么分?

(1)加上或减去接近整数、整十数的运算。

3.87+2.9975.2-19.8

=3.87+3-0.01=75.2-20+0.2

先让学生说出简便方法,教师再总结:

像这类题目简算的时候一般先加上或减去整数,多加了几就减几,多减了几就加几。

(2)根据加法交换律和结合律,使运算简便。

指名说出结合律和交换律的内容并用字母表示。

板书:

a+b=b+a(a+b)+c=a+(b+c)

计算下面的题。

4.37+

+0.63+

指名板演,其余的学生做在练习本上。

教师提问这样结合的目的是什么?

(凑整)

(3)根据减法性质,使运算简便。

让学生说出减法的性质内容并用字母表示。

板书:

a-b-c=a-(b+c)a-b-c=a-c-b

学生做下面的题:

10.47-5.68-1.325.39-2.88-1.39

一人板演,其余的同学做在练习本上,做完后集体订正。

教师:

为什么要把后面两个数加起来?

(凑整,也就是必须在能凑整的情况下才能用这个性质,否则就弄巧成拙了。

第二个题目交换位置也是为了凑整,所以一道题到底怎样计算简便还是要认真分析题目的特征,再选择适当的性质来计算。

(4)根据乘法的交换律、结合律、分配律使运算简便。

让学生说说交换律、结合律、分配律的内容并用字母表示。

板书:

a×b=b×aa×b×c=a×(b×c)

(a+b)×c=a×c+b×c

1.25×7238×56+44×3894×101

教师:

这三道题各应怎样简便运算?

请三名学生板演,其余的同学做在练习本上。

做完后集体订正,说说你的理由。

1.25×72

=1.25×8×9

(算式中有125应想到8,因为125×8=1000,乘积得整百整千的数,算起来方便。

38×56+44×38

=38×(56+44)

(两个不同的因数相加组成整十、整百、整千的数,这样计算起来简便。

94×101

=94×(100+1)=94×100+94×1

(一个因数接近整十、整百,拆成和或差的形式。

(5)教师:

我们已经回顾了加法、减法、乘法的运算定律和性质,除法又有哪些运算性质呢?

学生回答,教师整理。

除法的运算性质(除数不为0):

板书:

a÷(b×c)=a÷b÷ca÷(b÷c)=a÷b×c

3900÷(39×25)5700÷(57÷9)

先让学生利用性质进行计算,并请两名学生板演,做完后集体订正。

3900÷(39×25)5700÷(57÷9)

=3900÷39÷25=5700÷57×9

=100÷25=100×9

=4=900

3.课件出示。

例1:

计算:

让学生观察这道题中的数有什么特点。

提问:

混合运算的运算顺序是什么?

这道题在计算时用到了哪些运算定律?

让学生独立完成。

三、课堂作业

1.完成教材第77页下面的“做一做”的题。

教师巡视,进行个别辅导。

2.用简便方法计算下面各题:

答案

四、课堂小结

通过这节课的学习活动,你有什么收获?

【教学反思】

数的运算分两个阶段复习,第一阶段复习四则运算,第二阶段复习混合运算和运算定律。

复习四则运算,教师先讲解整数、小数、分数的加、减计算法则之间的联系。

由于计算加、减法是把相同数位的数相加、减,所以计算整数加、减法要把相同数位对齐,计算小数加减法要把小数点对齐,计算分数加减法要先通分化成同分母分数;再讲解小数乘除法与整数乘除法的联系,突出计算小数乘除法分别应用积不变的规律和商不变的规律化成整数乘除法;还要讲解分数乘法和除法的联系,突出分数除法是用倒数的知识转化成分数乘法计算的。

 

第6单元整理和复习

1.数与代数

第5课时解决问题

【教学目标】

1.使学生进一步理解、掌握运用分数乘、除法知识解决有关问题,发展应用意识,形成评价与反思的意识。

2.形成解决问题的一些策略、方法,提高学生分析问题和解决问题的能力。

对不懂的地方或不同的观点有提出疑问的意识,并愿意对数学问题进行讨论。

【教学重难点】

重难点:

掌握应用题的一般解题步骤,理解并掌握分析应用题数量关系的两种方法。

【教学过程】

一、复习回顾

复习简单应用题。

(1)算一算。

过程要求:

1利用计算卡片逐一出示算式。

2学生口算,直接说出计算结果。

③选择部分算式要求学生说一说过程与方法。

(2)下面各题只列式不计算。

①六年级学生为灾区捐款,六年级

(一)班捐款105元,六年级

(二)班捐款98元。

两个班一共捐款多少元?

2学校图书馆买来150本故事书,借给五年级

(一)班48本,还剩多少本?

③农具厂每天能够生产56件农具,7天能够生产多少件农具?

④水果店有24筐苹果,要6天卖完,平均每天要卖多少筐苹果?

⑤成绩展览会上要展出48本大字本,每张桌子上放8本,需要几张桌子?

⑥五年级有学生136人,其中5/8是女生,女生有多少人?

教师:

逐一指名列式,并要求说出为什么要这样列式,它表示的是什么意义?

(说出加、减、乘、除。

教师小结:

这些都是一些简单的应用题,从以上的应用题可以看出,简单应用题都是由两个已知条件和一个问题组成的,而且问题与两个已知条件都是直接相关的。

也就是说,都是可以由已知条件经过一步计算直接求出答案。

如果是一道复合应用题我们又该怎样入手呢?

怎样熟练地掌握解题技巧呢?

复习复合应用题。

1.出示教材第78页第10题。

学生读题,理解题意。

教师提问:

①解决问题时一般可以分成几个主要步骤?

每一步做什么?

②分析数量关系时有几种方法?

你运用的是什么方法?

③需要借助线段图等直观手段吗?

④解决问题时要注意什么?

教师:

同学们先独立思考一下,然后在小组之间讨论交流。

学生汇报,教师板书。

解决问题的一般步骤是:

首先,理解题意,找出已知信息和所求问题;

其次,分析数量关系,确定先算什么,再算什么,最后算什么;

再次,确定每一步该怎样算,列出算式,算出得数;

最后,进行检验,写出答案。

(检验是解决问题的一个步骤,要养成检验的好习惯。

2.教师:

同学们,我们就按刚才解决问题的一般步骤来解决第10题吧!

这道题已知什么和什么,求什么?

指名回答。

教师:

同学们,你们经常是怎样分析题意的?

你知道应用题分析数量关系有几种方法吗?

让学生思考,再在小组中交流。

学生汇报。

教师板书:

解决问题常用的分析方法有两种:

①综合法:

从已知信息入手,利用已知信息看能解决什么问题,直到求出未知数。

②分析法:

从所求的问题出发,逐步找出解答问题所需要的条件,依次推导,直到问题解决。

3.教师:

请你用喜欢的方法来分析这道题吧。

学生分析题意。

教师:

如果这道题用分析法来分析题意应怎样思考呢?

要求六

(2)班交了多少件作品,就要找到六

(2)班的作品与什么有关系?

学生回答:

通过分析发现,得到六

(2)班的作品与六

(1)班有关系。

同学们画出线段图吧。

1教师:

(2)班作品是六

(1)班的几分之几?

(六

(2)班的作品是六

(1)班的“1+

”。

②教师:

求六

(2)班交了多少件作品,实际是求什么?

(实际是求六

(1)班的“1+

”是多少,也就是求32件作品的“1+

”是多少件。

③教师:

求一个数的几分之几是多少,用什么方法计算?

请列出算式,并计算结果。

请同学们自己列式解答并检验。

教师:

在解决实际问题时,为了方便我们分析题意,还应该记住一些常用的数量关系。

你能说出哪些常见的数量关系?

学生回答,教师板书:

收入、支出、结余

收入-支出=结余

单价、数量、总价

单价×数量=总价

单产量、数量、总产量

单产量×数量=总产量

速度、路程、时间

速度×时间=路程

工作效率、时间、工作总量

工作效率×时间=工作总量

本金、时间、利率、利息

本金×利率×时间=利息

请以小组为单位,先举例说明数量关系的意义,再填出每组数量中最基本的数量关系式。

指名汇报,教师完成板书。

教师:

复杂应用题都是以简单应用题的数量关系为基础的,所以掌握这些常见的数量关系式对我们来说很有帮助。

二、课堂作业

教材78页“做一做”第1、2题。

让学生独立完成,再让学生说一说是怎样分析数量关系的?

计算时需要注意什么?

答案:

(16.5-15)÷15=0.1=10%

三、课堂小结

通过这节课的学习,你对于解决问题的困惑解除了吗?

说一说你有哪些收获?

【教学反思】

1.强化基础训练,掌握数量关系。

基本的数量关系是指加、减、乘、除法的基本应用,比如:

求两个数相差多少,用减法解答;求一个数是另一个数的百分之几,用除法解答;求一个数的几倍是多少,用乘法解答等。

任何一道复合应用题都是由几道有联系的简单应用题组合而成的。

基本的数量关系是解答应用题的基础,因此在教学中复习一些常用的数量关系就显得尤为重要了。

2.综合运用知识,拓宽解题思路。

能够正确解答应用题,是学生能综合运用所学知识的具体表现。

应用题的解答一般采用综合法和分析法。

我们在复习时侧重分析法的运用。

3、系统整理归纳,形成知识网络。

在应用题复习中,一题多解是沟通知识之间内在联系的一种行之有效的练习形式。

它不但有助于学生牢固地掌握数量关系,而且可以开阔解题思路,提高学生多角度地分析问题的能力。

所以在教学中应多提倡从不同的角度去解题。

第6单元整理和复习

1.数与代数

第6课时式与方程

(1)

【教学目标】

使学生进一步认识用字母表示数及其作用,能正确的用含有字母的式子表示数量及数量关系。

【教学重难点】

重难点:

能正确的用含有字母的式子表示数量及数量关系、计算公式等。

【教学过程】

一、谈话导入

1.看到这些字母,你能立刻想到什么?

课件出示:

BTVSOSkgNBA……

同学们能很快的说出这些字母或字母组合表示的意义吗?

说明字母在生活有一定的地位和作用。

2.揭示课题:

这节课我们就来学习式与方程。

(板书课题)

二、复习讲授

复习字母表示数

1.结合谈话导入说说用字母表示数有什么优越性?

教师:

用字母能简明的表达数量关系、运算定律和计算公式,为研究和解决问题带来很多方便。

2.请同学们完成下面的练习。

(1)填空。

(课件出示)指名板演,其余学生写在练习本上。

①用s表示路程,v表示速度,t表示时间,那么s=()。

②b乘5.6可以写作(),还可以写作();a乘h可以写作(),还可以写作()。

③a、b、c、d表示非0自然数,那么分数乘法的计算方法可以用字母表示()。

(2)订正后提问:

在写含有字母的式子时需要注意什么问题?

3.师生共同总结在写含有字母的式子时应注意的问题:

(1)在含有字母的式子里,数和字母中间的乘号可以记作“·”也可以省略不写。

(2)省略乘号时,应当把数字写在字母的前面。

(3)数与数之间的乘号不能省略。

加号、减号、除号都不能省略。

4.巩固练习。

(1)完成教材第81页的第一个“做一做”。

(2)根据题意写出各式表示的意思。

一种滚筒式洗衣机,单价a元,商城第一天卖出m台,第二天卖出9台。

m-9表示()m+9表示()

ma表示()9a表示()

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 英语

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1