医学细胞生物学笔记文件.docx

上传人:b****7 文档编号:23527981 上传时间:2023-05-17 格式:DOCX 页数:36 大小:115.97KB
下载 相关 举报
医学细胞生物学笔记文件.docx_第1页
第1页 / 共36页
医学细胞生物学笔记文件.docx_第2页
第2页 / 共36页
医学细胞生物学笔记文件.docx_第3页
第3页 / 共36页
医学细胞生物学笔记文件.docx_第4页
第4页 / 共36页
医学细胞生物学笔记文件.docx_第5页
第5页 / 共36页
点击查看更多>>
下载资源
资源描述

医学细胞生物学笔记文件.docx

《医学细胞生物学笔记文件.docx》由会员分享,可在线阅读,更多相关《医学细胞生物学笔记文件.docx(36页珍藏版)》请在冰豆网上搜索。

医学细胞生物学笔记文件.docx

医学细胞生物学笔记文件

第四章、细胞生物学的研究技术

〔简单了解,考试题目较简单〕

一显微镜

1普通显微镜〔lightmicroscope〕:

主要用于染色标本的观察

2相差显微镜〔phasecontrastmicroscope〕:

用于观察培养的活细胞(无色的细胞)

倒置相差显微镜适用于观察体外培养的活细胞的构造和活动

3微分干预差显微镜(DIC显微镜):

适用于活细胞之类的无色透明标本的观察,广泛应用于各种细胞工程中的显微操作

4暗视野显微镜:

适用于无色透明标本的观察〔活细胞〕,但不可以观察到细胞的内部构造

5激光扫描共聚焦显微镜:

荧光检测、细胞构造的三维重建;、微操作、定点破坏培养物中的某些细胞,实现对某些特定细胞的保存

6荧光显微镜:

检测细胞外表或内部特定的抗原

二.亚显微构造的观察

1电子显微镜〔electronmicroscope〕:

透射电镜TEM用于观察和研究细胞内部细微构造;扫描电镜SEM用于观察标本外表精细的三维形态构造;高压电镜

2扫描探针显微镜:

扫描隧道显微镜;原子力显微镜

三.细胞的别离与培养

〔1〕细胞的别离:

利用物理性质不同〔沉降和离心〕;利用不同类型细胞与玻璃或塑料的黏附能力不同;利用抗体特异性结合的特性;采用带有荧光染料的特异性抗体来标记悬液中的某些特定细胞,然后采用流式细胞仪将被标记的细胞别离出来〔悬液:

用蛋白质水解酶处理组织块,并参加一定量的乙二胺四乙酸EDTA以结合溶液中的Ca2+,再通过轻微振荡使组织解散〕

〔2〕细胞的培养〔cellculture〕:

从组织别离出来特定的细胞在一定条件进展培养,使之能够继续生存生长以至增殖的一种方法,分为原代培养和传代培养

细胞在体外生长的条件:

培养基;支持物;其他〔CO2浓度、适宜的温度、PH〕

A原代培养:

由起始实验材料所进展的细胞培养

B对已有的细胞〔原代培养所得的培养物或已有的培养物〕进展继续培养

C细胞系:

通过原代培养所得的细胞培养物〔可以含有原代培养所用的起始实验材料的所含细胞〕

D细胞株〔cellstrain〕:

由单一类型的细胞所组成的细胞系

四.细胞融合〔cellfusion〕:

是指两个或两个以上的细胞相互接触并且合并而形成一个细胞〔基因型一样的细胞形成融合称为同核融合,基因型不同的细胞形成的融合称为并核融合〕;细胞融合的方法:

生物诱导法,化学诱导法,物理诱导法

五.细胞连接〔celljunction〕:

A封闭连接occludingjunction〔又称严密连接tightjunction〕

B锚定连接anchoringjunction:

与肌动蛋白相连的锚定连接〔隔状连接、黏合带、黏合斑〕;中间丝相连的锚定连接〔桥粒、半桥粒〕

C通讯连接:

间隙连接、化学突触、胞间连丝

★第五章、细胞膜及其外表

〔重点内容〕、

第一节、细胞膜的分子构造和特性

(一)膜的化学组成

(1)膜脂

1、磷脂〔了解分类〕

A、磷脂酰胆碱〔含量最多〕,也称为卵磷脂

B、磷脂酰乙醇胺〔含量其次〕

C、磷脂酰丝氨酸

D、磷脂酰肌酶

E、鞘磷脂

2、胆固醇〔知道胆固醇的作用:

a、提高脂双层的力学稳定性

b、调节脂双层的流动性

c、降低水溶性物质的通透性

3、糖脂〔含有一个或者几个糖基的脂类,存在于膜的非细胞质外表,糖基暴露于细胞外表,并且存在于所有细胞膜中〕

【注意】〔膜脂的特点:

一头亲水,一头疏水的兼性分子或者称为双亲酶分子,其中亲水的一头为极性头,疏水的一头为非极性头〕

〔2〕、膜蛋白〔membraneproteins〕

跨膜蛋白〔transmembraneproteins〕

膜周边蛋白〔peripheralprotein〕分布在膜的内外表,为水溶性的蛋白质

脂瞄定蛋白〔lipid-anchoralprotein〕位于膜的两侧

〔作用:

有机械支持的作用,也可以作为载体蛋白、受体,抗原、酶在运输物质、信号传导、免疫反响、细胞连接〕

〔3〕膜糖〔只有真核细胞才有,主要分布在细胞膜的外外表〕

细胞被〔糖萼〕:

在大多数真核细胞的外表,富含糖类的周边区,主要包括细胞膜连接的糖蛋白与糖脂的寡糖侧链和膜蛋白聚糖上的多聚糖。

〔作用:

保护细胞外表,与外界联系,信息交流,细胞识别〕

〔二〕、膜的分子构造〔蛋白质-脂质-蛋白质〕

A、片层构造模型

B、单位膜模型

※C、液态嵌镶模型

〔1〕优点:

强调膜的动态性和蛋白质分子的嵌镶关系

〔2〕缺点:

不能说明具有流动性的质膜怎么样保持摸的相对完整性和稳定性

〔3〕内容〔重点〕:

A、流动的脂质双分子层构成了膜的骨架

B、膜蛋白嵌镶或者附着在脂质双分子层中

C、糖分子分布于膜的外外表

※〔三〕、膜的理化特性

1、不对称性:

膜的内外两层在构造和功能上有很大的差异

A、膜蛋白的不对称分布B、膜脂的不对称分布

2、流动性

A、膜脂的流动性B.膜蛋白的流动性

膜脂分子的旋转运动膜蛋白分子的侧向扩散运动

膜脂分子的翻转运动

膜脂分子的弯曲运动膜蛋白分子的旋转运动

膜脂分子的伸缩震荡运动

膜脂分子的旋转异构

膜脂分子侧向扩散

3、影响膜脂流动性的因素

脂肪酸链的长度和不饱和度;胆固醇与磷脂的比值;卵磷脂与鞘林子的比值;

膜蛋白的影响;其他因素〔温度、PH、离子强度、金属离子〕

二、细胞膜的跨膜运输〔1〕、小分子和离子的穿膜运输

与细胞膜有关的物质运输活动主要有两种方式〔2〕、大分子和颗粒的膜泡运输

载体蛋白:

改变设想(主动,被动运输)

(1)膜转运蛋白通道蛋白:

形成通道(被动运输)

(2)运输方式

A.被动运输(passivetransport):

顺浓度梯度,转运蛋白

简单扩散(simplediffuction):

脂溶性物质(如苯,醇,类固醇激素及O2,N2等

离子通道扩散电压门控通道(受膜电压控制)

配体门控通道(受化学物质控制)(Na+,K+,Ca2+等极性很强的水化离子)

机械门控通道

易化扩散(facilitateddiffuction):

凭借载体蛋白的帮助穿过细胞膜,但不耗细胞的代谢能,顺浓度梯度转运(非脂溶性的小分子,极性分子,离子或亲水性的物质[如糖,氨基酸,核苷酸,金属离子等)

B.主动运输

离子泵

(1)钠泵:

是一种蛋白质(Na+-K+ATP酶),具有载体和酶的活性对向运输

在细胞膜内侧,有Na+,Mg2+存在下,ATP酶被Na+激活,将ATP分解为ADP和高能磷酸根.酶磷酸化,改变设想的ATP酶,在膜外侧有K+存在时,与K+亲和力大,与之结合,发生去磷酸作用,同时酶又恢复到原来的构象,将移至膜内释放.水解一个ATP可转运3个Na+和2个K+

意义:

a.维持细胞的渗透压,保持细胞的体积b.为葡萄糖协同运输泵提供了驱动力c.维持细胞的静息电位

(2)钙泵(Ca2+ATP酶)

C.伴随运输(协同运输):

由钠泵(或H+泵)与载体蛋白协同作用,靠间接消耗ATP所完成

主动运输的能量来源:

水解ATP,协同运输中的离子梯度(另一物质的电化学梯度)动力

(2)膜泡运输

(一)胞吞作用(endocytosis)

A.吞噬作用(phagocytosis):

(细胞内吞入较大的固体颗粒或分子复合物)

B.饱饮作用(pinocytosis):

(细胞吞入溶液物质或极微小颗粒物)—无特异性

C.受体介导的胞吞作用:

大分子与细胞膜上特异性受体相识别并结合,然后通过膜囊泡系统完成物质的传送---特异性很强

(二)胞吐作用(exocytosis):

是一种与胞吐作用相反的物质运输方式,以转运囊泡的形式从内质网出发,经高尔基体后与细胞膜融合分泌到细胞外,此外经细胞内消化后的残质体也通过细胞膜排出细胞外,这些过程称为胞吐作用.胞吐作用需要耗ATP,属细胞膜的主动运输,是通过膜的一系列膜泡融合完成的.

根本过程:

细胞内被运输的物质由膜包围成小泡,小泡运输至质膜下方并与质膜融合,将内容物分泌或排出细胞外

三.膜受体胞外区域:

调节部位

胞内区域:

活性部位

(一)化学成分:

糖蛋白,糖脂,唐脂蛋白

构造:

识别部(调节单位),效应部(催化单位),转换部或传导部(转换单位)

(二)分类离子通道受体:

靠开启离子通道来转导信号

催化受体:

靠自身的TPK活性来转导信号,其第二信使是磷酸化的靶蛋白

G蛋白偶联受:

通过G蛋白将信号传给效应酶

(三)特异性:

A.特异性与非决定性B.饱和性C.高亲和度D.可逆性E.特定的组织定位

(四)功能:

参与细胞与外界的通讯,细胞与细胞之间的识别,细胞的免疫识别和细胞功能的调节和控制

四.细胞的化学信号分子及其受体

(1)信号转导:

由胞外信号(第一信使)转换为细胞内信号的过程

第二信使:

由细胞膜外表受体承受信号后转换而来的胞内信号

(2)胞内主要信号通路

A.cAMP信号通路:

(细胞外信号分子)配体→G蛋白偶联受体→G蛋白—激活-腺苷环化酶,AC(效应蛋白)→cAMP(第二信使)→蛋白激酶A,PKA→一系列蛋白磷酸化→基因转录,代谢变化

B.磷脂酰肌醇信号通路

胞外信号分子与膜受体结合→G蛋白→活化磷脂酶C(效应蛋白)

→4,5-二磷酸酰肌醇二酰甘油〔DAG〕→PKC

1,4,5-三磷酸肌醇〔IP3〕→Ca2+浓度升高

 

★第六章、细胞质和细胞器

细胞质基质〔Cytoplasmicmatrit〕:

细胞中可分辨的构造以外的无形胶状物质

细胞器〔Organelle〕:

存在于细胞基质中,具有一定的化学组成,一定的形态构造,执行特定的生理功能,并且为细胞所固有的有形构造小体。

一、细胞质基质

1、化学组成:

无极小分子类物质〔水和离子等〕

中分子物质〔单糖、氨基酸、单核苷酸等〕

大分子物质〔蛋白质、多糖、核酸等〕

2、理化特性

3、功能

a.为细胞生命运动提供相对独立、稳定的环境

b.是细胞内各种生化反响的场所,又是细胞内营养物质贮存以及代谢产物的分散介质

c.对细胞内外的物质的交换转运具有一定的调节控制作用

d.参与细胞外表特化构造的形式及其功能活动过程

e.为各种细胞器的完整构造的维持与正常功能活动的行驶提供必需的环境基质和作用底物

f.对于细胞的分列繁殖,细胞的分化具有重要的作用

※二.核糖体〔RibosomeRi〕

1、形态构造:

不规那么的颗粒状小体

大亚基

结合部之间,有一特殊间隙构造,是mRNA结合、穿越的部位

小亚基

2、类型:

原核细胞核糖体

真核细胞质核糖体主要根据核糖体的沉降系数来区别

真核细胞器核糖体

3、核糖体的理化特性

r蛋白质:

40%核糖体的外表不同类型的核糖体的r蛋白和rRNA两组分,无论是种类还是数量均不同,即便是同类型的核糖体,其大小亚

rRNA:

60%核糖体内部基中的rRNA、r蛋白质的种类、数量也有较大的差异

4、核糖体的形成和组装〔自组装〕

核仁组织区编码rRNA的基因〔rDNA〕

 

45S前体rRNA

被剪切

18SrRNA32SrRNA

整合被剪切

细胞质中特定的小亚基r蛋白

5.8SrRNA+28SrRNA核仁体外rDNA转录的5SrRNA

整合

40S小亚基颗粒

细胞质中特定的大亚基蛋白

60S大亚基颗粒

5、核糖体的4个重要的功能活性部位

a、氨酰基位点〔受点或者A点〕:

结合新掺入的氨酰-rRNA的位点

b、肽酰基位点〔结合点或者P点〕:

肽酰-rRNA的结合位点

c、肽酰基转移酶位点:

d、GDP酶位点:

水解GDP,供应催化肽酰基-rRNA由A位点移到P位点所需能量

e、E位点〔出口位〕:

肽酰转移后,与即将释放的tRNA的结合位点

6、核糖体的存在形式在功能状态主要以多聚核糖体的形式存在

A游离核糖体:

构造蛋白

B附着核糖体:

跨膜蛋白,分泌蛋白,溶酶体蛋白,驻留蛋白

7、RNA的作用

1〕mRNA:

蛋白质合成的模板

2)tRNA:

转运特定的氨基酸

3)rRNA:

核糖体的重要组分,决定核糖体的空间构造

8、蛋白质的合成

肽链合成的起始肽链的延长肽链合成的终止

※三、内膜系统〔endomembranesystem〕

细胞内构造、功能及至发生关联的所有膜性构造细胞器统一称为内膜系统。

包括内质网、高尔基复合体、溶酶体、过氧化酶体、各种转运小泡及核膜等功能构造。

♀〔一〕、内质网〔endoplasmicreticulum〕

1、化学组成

A、内质网膜的脂质组成B、内质网膜的蛋白质组成C内质网网腔中的蛋白质.

D、内质网膜所含的主要酶系:

葡萄糖-6-磷酸酶〔参与糖代谢〕,细胞色素P450

2、形态构造

A、由一层单位膜围成的连续网状膜系统,遍布细胞质

B、内质网的根本单位构造:

由一层单位膜所形成的大小、形状各异的管、泡、扁囊

C

(一)糙面内质网〔RER〕

形态:

a.有许多颗粒状核糖体附着在其外表;多为板层状排列的扁囊

b.在具有肽类激素或蛋白质分泌功能的细胞中分泌较多〔分泌程度高的细胞中分布丰富〕

功能:

核糖体附着的支架;新生肽链的折叠与装配;蛋白质的糖基化;蛋白质的胞内运输;

蛋白质的合成

糖基化:

是指单糖或寡糖与蛋白质之间通过共价键结合形成的糖蛋白的过程

(二)光面内质网(SER)

形态:

膜外表没有核糖体附着,多呈管、泡样网状构造

功能:

脂类的合成〔磷脂,胆固醇,肾上腺皮质素〕;糖原代谢;解毒作用;

参与骨骼肌收缩〔肌质网是Ca2+贮存场所,可通过释放和吸收Ca2+,调节肌肉收缩〕;

胃酸,胆汁的合成分泌

3.肽链穿越内质网的转移机制:

A.SPR结合信号肽:

信号肽—SRP—核糖体复合物多肽链合成暂停

B.核糖体锚着于内质网:

信号肽—SRP—核糖体—SRP受体复合物核糖体被带到ER膜上

信号肽-移位子核糖体锚着到RER,继续合成肽链

C.新合成的多肽链进入内质网腔

D.信号肽被剪切

E.肽链在ER网膜腔内发生修饰加工,随后核糖体大小亚基解聚,移位子通道关闭

♀〔二〕高尔基复合体〔Golgicomplex〕

1.形态构造光镜下,一般为不规那么的网状,颗粒状或线状

电镜下,由扁平囊和大小不等的囊泡组成

由成簇的Golgicapparatus(body)聚集而成,是一个封闭的膜性囊泡状构造,又称高尔基堆。

顺面高尔基网(凸面,朝向细胞核或内质网):

高尔基体的入口区域,承受ER合成蛋白

〔Cisgolginetwork〕质和脂质,并分选

反面高尔基网〔凹面,朝向细胞膜〕:

高尔基体的出口区域,参与蛋白质的分选与包装,〔Transgolginetwork〕最后输出

中间膜囊:

主要执行多数糖基的修饰,糖脂的形成,多糖合成

2.化学组成:

脂质和蛋白质

a.脂质含量介于质膜和内质网膜之间b.含有主要的酶类:

糖基转化酶〔最具特征的酶〕

3.功能:

胞内物质转送运输和细胞的分泌活动;糖蛋白的加工合成;蛋白质水解;

蛋白质的分选和胞内膜泡运输

♀〔三〕溶酶体〔lysosome〕

1.构造特征:

a.由一层单位膜包裹而成的囊球状构造小体

b.含有丰富的水解酶〔酸性磷酸酶是溶酶体的标志酶〕

c.膜蛋白高度糖基化,有利于防止溶酶体所含的酸性水解酶对其自身膜构造的消化分解

d.溶酶体膜上嵌有质子泵,形成和维持溶酶体囊腔内酸性的内环境

e.膜上有许多载体蛋白

2.溶酶体的类型

A.内体性溶酶体:

〔GC的运输小泡+内吞体〕

运输小泡先由TrainsGCN形成,再被以内格蛋白变成有被小泡从高尔基体脱落后,网格蛋白被脱掉,成为外表光滑的运输小泡与内吞体合并后演变为内体性溶酶体

B.

吞噬性溶酶体:

自噬性溶酶体:

内吞性溶酶体+内源性物质

异噬性溶酶体:

内吞性溶酶体+外源性物质

剩余体

3.溶酶体的形成与成熟:

4.

ER上核糖体合成溶酶体酶蛋白进入ER腔进展N-连接糖基化进入CG顺面膜囊寡糖链上甘露糖残基磷酸化,形成6-磷酸-甘露糖〔M6P〕与反面膜囊上的M6P受体结合出芽形成特异性运输小泡融合

+内吞体内体性Ly

5.功能:

对自身物质的分解;对细胞内吞物的消化;参与激素形成;细胞营养作用;

防御保护功能;骨骼发生重的消除旧骨质;在器官组织变态与萎缩中的作用;

协助精子与卵细胞受精

(四)过氧化物酶体〔peroxisome/microbodyMb〕

1.形态构造:

异质性,中央常有类核体

A.Mb中常常含有电子致密度较高,排列规那么的晶格构造,称作类核体/类晶体

B.在Mb界膜内外表可见一条称为边缘板的高电子致密度条带状构造

2.Mb中的酶:

氧化酶类,过氧化氢酶类〔标志酶〕,过氧化物酶

3.功能:

解毒作用,氧化脂肪酸,调节细胞氧张力

※四.线粒体〔Mitochondrion/mitochondria〕

(一)线粒体的构造

1.形态与数量分布光镜下一般呈线状、杆状、粒状;

线粒体的形态随Cell发育阶段不同而异;

生理活动旺盛的细胞中线粒体数目较多,哺乳动物成熟红细胞中没有线粒体

◇2.亚微构造:

由两层高度特化的单位膜套叠而成的封闭性膜囊构造。

两层膜将线粒体内部空间与细胞质隔离,形成两个独立的线粒体室,构成线粒体的支架

a.外膜〔outmembrane〕:

是一层单位膜,厚5-7nm,光滑有弹性;富含转运蛋白〔孔蛋白〕;通透性较高;标志性酶是单胺氧化酶

b.内膜〔innermembrane〕:

是一层单位膜;蛋白质:

脂质=3:

1;高度特化,通透性小

3.基质腔:

由内膜直接包围形成的空间,含有基质

膜间隙:

内外膜间的空间

嵴:

内膜向内腔突起的折叠扩大内膜面积,提高ATP合成的效率

需能较多的细胞,线粒体数量较多,嵴也多

◇4.基粒〔elementaryparticle〕:

内膜(包括嵴)的内外表附着的凸向内腔,排列规那么的球形小体

A.

形态构造头部:

扁球体〔F1偶联因子〕--催化ATP合成

柄部:

基部:

〔F0偶联因子〕—连接F1与内膜,是质子通道

B.功能:

将呼吸链电子传递过程中释放的能量用于ADP磷酸化生成ATP的关键装置

C.内外膜转位接触点:

内外膜上存在一些内膜与外膜相互接触的地方,膜间隙变狭窄

D.基质〔matrix〕:

线粒体内腔充满电子密度低的均质胶状物

〔二〕功能:

◇〔1〕氧化代谢:

生物氧化〔biologicaloxidation〕:

在细胞内特定的细胞器〔主要是线粒体〕内,在O2的参与下,分解各种大分子物质,产生CO2,与此同时,分解代谢所释放出的能量贮存于ATP中,这一过程称为生物氧化,也称为细胞呼吸〔cellularrespiration〕

A.特点:

生物氧化本质上是在线粒体中进展的一系列由酶系所催化的氧化复原反响

所产生的能量贮存于ATP的高能磷酸键中

反响是分步进展的,能量也是逐步释放的

反响在恒温、恒压条件下进展

反响过程中需要H2O的参与

B.根本过程:

无氧酵解〔糖酵解〕:

在细胞质进展

三羧酸循环〔TAC〕:

在线粒体基质进展

电子传递在线粒体内膜上进展

氧化磷酸化

淀粉葡萄糖

能源物质丙酮酸线粒体能量〔贮存于ATP〕

蛋白质氨基酸

(2)氧化磷酸化〔oxidativephosphorylation〕:

细胞内ATP形成的主要方式,是释放代谢能的主要环节。

由底物氧化而产生的电子在呼吸链传递过程中偶联ADP的磷酸化,由此而生成ATP。

1.氧化磷酸化的构造根底

〔1〕呼吸链〔repiratorychain〕:

在线粒体内膜上,一系列能可逆承受、释放H+和e-的蛋白质复合物相关联地有序排列成传递链,称呼吸链或电子传递链〔electrontransportchain〕

〔2〕ATP合成酶的构造组成

2.氧化磷酸化的偶联机制:

质子转移和质子驱动力的形成

化学渗透假说

(3)细胞凋亡〔apoptosis〕:

指细胞在一定的生理和病理条件下,由基因控制的细胞自主性的死亡过程,又称细胞程序性死亡。

(三)线粒体的半自主性:

线粒体有自己的遗传系统,在线粒体基质中存在线粒体DNA(mtDNA)、RNA、核糖体、蛋白质合成所需的酶,能够独立表达和进展蛋白质合成。

但线粒体基因组编码序列有限,哺乳动物细胞线粒体DNA仅能编码13种多肽,大局部线粒体蛋白质靠核基因组的编码,线粒体自身的复制、转录、翻译过程也必须靠核基因提供酶蛋白才能进展。

(四)核编码蛋白质向线粒体转运

(1)核编码蛋白质向线粒体基质中转运

1.基质导入序列和分子伴侣

导肽:

大局部线粒体蛋白质在细胞质Ri上合成时,〔其N端带有一肽端〕前体蛋白质N端有一由10-80个氨基酸残基组成的序列,富含碱性氨基酸,内含定向转运线粒体的信息的肽段。

结合线粒体前体蛋白的因子:

前体蛋白的结合因子、线粒体输入刺激因子

基质导入序列:

导肽的长短与被导的蛋白质定位在线粒体的不同部位有一定的关系,定位于基质中的蛋白质一般具有较短的导肽。

2.镶嵌于线粒体外膜的跨外膜转位酶复合体

3.定位于线粒体基质的蛋白质的运送

(2)核编码蛋白质向线粒体其他部位转运:

向线粒体外膜转运;向线粒体内膜转运

(五)线粒体的发生

线粒体的增值:

出芽分裂;收缩分裂;间壁分裂

第七章、细胞骨架

※细胞骨架〔Cytosketleton〕存在与真核细胞细胞质中,由细胞内蛋白成分组成的一个复合网架系统,主要由微管、微粒和中间丝组成,能维持细胞的形态,参与细胞运动,参与细胞分裂等。

一、微管〔microtubule,MT〕

※微管是真核细胞中普便存在的细胞骨架成分之一,是由微管蛋白和微管结合蛋白的中空性圆管筒状构造组成,主要存在于细胞质中,是一种动态的构造,以适应细胞质经常变化的状况,完成微管的功能;它的主要功能有维持细胞的形态,参与细胞运输和细胞分裂,形成鞭毛和纤毛、中心体等构造,控制膜性细胞器的定位和胞内物质运输。

(1)微管的组成成分

α微管蛋白单管〔13根原纤维〕

微管蛋白聚合异二聚体原纤维微管二联管〔23根原纤维〕

β微管蛋白三联管〔33根原纤维〕

微管结合蛋白

微管结合分子

〔2〕、微管的组装

※1、体外组装

a)过程:

包括三个时期:

成核时期,聚合时期,稳定时期

成核时期:

微管蛋白聚合形成短的寡聚体,即核心形成,然后微管蛋白在其异二聚体在其两端和侧面添加使之扩展成为片状带,当片状带加宽至13=根原纤维时,即合成一段微管〔此过程也称为延迟期〕

聚合时期〔延长期〕:

新的异二聚体不断加到这段微管的端点,使微管不断延长。

〔该时期细胞内的高浓度的游离微管蛋白使微管的聚合速度快于解离速度〕

稳定时期:

随着细胞质中游离微管蛋白浓度下降,到达临届浓度时,微管的聚合与解离速度到达平衡,即微管的组装与去组装到达速度相等,微管相对稳定

b)微管两端的异二聚体微管蛋白具有不同的构型,决定了它们添加异二聚体的能力不一样,因而微管两端具有不同的装配速度。

正端〔最外端是β球蛋白〕装配快,负端〔最外端是α球蛋白〕装配慢。

c)踏车〔treadmilling〕现象:

当微管两极聚合和解聚到达平衡时,微管的长度相对恒定。

这种现象状况称为踏车现象

2、内装配:

除了遵循体外装配的规律外,还

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 国外设计风格

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1