图像加密英文翻译 译文Word文档格式.docx
《图像加密英文翻译 译文Word文档格式.docx》由会员分享,可在线阅读,更多相关《图像加密英文翻译 译文Word文档格式.docx(27页珍藏版)》请在冰豆网上搜索。
学生姓名:
覃洁文
学号:
1000710222
指导教师单位:
姓名:
王东
职称:
副教授
2014年6月7日
Parallelimageencryptionalgorithmbasedondiscretizedchaoticmap
Abstract
Recently,avarietyofchaos-basedalgorithmswereproposedforimageencryption.Nevertheless,noneofthemworksefficientlyinparallelcomputingenvironment.Inthispaper,weproposeaframeworkforparallelimageencryption.Basedonthisframework,anewalgorithmisdesignedusingthediscretizedKolmogorovflowmap.Itfulfillsalltherequirementsforaparallelimageencryptionalgorithm.Moreover,itissecureandfast.Thesepropertiesmakeitagoodchoiceforimageencryptiononparallelcomputingplatforms.
1.Introduction
Inrecentyears,thereisarapidgrowthinthetransmissionofdigitalimagesthroughcomputernetworksespeciallytheInternet.Inmostcases,thetransmissionchannelsarenotsecureenoughtopreventillegalaccessbymaliciouslisteners.Thereforethesecurityandprivacyofdigitalimageshavebecomeamajorconcern.Manyimageencryptionmethodshavebeenproposed,ofwhichthechaos-basedapproachisapromisingdirection[1–9].
Ingeneral,chaoticsystemspossessseveralpropertieswhichmakethemessentialcomponentsinconstructingcryptosystems:
(1)Randomness:
chaoticsystemsgeneratelong-period,random-likechaoticsequenceinadeterministicway.
(2)Sensitivity:
atinydifferenceoftheinitialvalueorsystemparametersleadstoavastchangeofthechaoticsequences.
(3)Simplicity:
simpleequationscangeneratecomplexchaoticsequences.
(4)Ergodicity:
achaoticstatevariablegoesthroughallstatesinitsphasespace,andusuallythosestatesaredistributeduniformly.
Inadditiontotheaboveproperties,sometwo-dimensional(2D)chaoticmapsareinherentexcellentalternativesforpermutationofimagepixels.PichlerandScharingerproposedawaytopermutetheimageusingKolmogorovflowmapbeforeadiffusionoperation[1,2].Later,Fridrichextendedthismethodtoamoregeneralizedway[3].Chenetal.proposedanimageencryptionschemebasedon3Dcatmaps[4].Lianetal.proposedanotheralgorithmbasedonstandardmap[5].Actually,thosealgorithmsworkunderthesameframework:
allthepixelsarefirstpermutedwithadiscretizedchaoticmapbeforetheyareencryptedonebyoneunderthecipherblockchain(CBC)modewherethecipherofthecurrentpixelisinfluencedbythecipherofpreviouspixels.Theaboveprocessesrepeatforseveralroundsandfinallythecipher-imageisobtained.
Thisframeworkisveryeffectiveinachievingdiffusionthroughoutthewholeimage.However,itisnotsuitableforrunninginaparallelcomputingenvironment.Thisisbecausetheprocessingofthecurrentpixelcannotstartuntilthepreviousonehasbeenencrypted.Thecomputationisstillinasequentialmodeevenifthereismorethanoneprocessingelement(PE).ThislimitationrestrictsitsapplicationplatformsincemanydevicesbasedonFPGA/CPLDordigitalcircuitscansupportparallelprocessing.Withtheparallelcomputingtechnique,thespeedofencryptionisgreatlyaccelerated.
Anothershortcomingofchaos-basedimageencryptionschemesistherelativelyslowcomputingspeed.Theprimaryreasonisthatchaos-basedciphersusuallyneedalargeamountofrealnumbermultiplicationanddivisionoperations,whichcostvastofcomputation.Thecomputationalefficiencywillbeincreasesubstantiallyiftheencryptionalgorithmscanbeexecutedonaparallelprocessingplatform.
Inthispaper,weproposeaframeworkforparallelimageencryption.Undersuchframework,wedesignasecureandfastalgorithmthatfulfillsalltherequirementsforparallelimageencryption.Therestofthepaperisarrangedasfollows.Section2introducestheparalleloperatingmodeanditsrequirements.Section3presentsthedefinitionsandpropertiesoffourtransformationswhichformtheencryption/decryptionalgorithm.InSection4,theprocessesofencryption,decryptionandkeyschedulingwillbedescribedindetail.ExperimentalresultsandtheoreticalanalysesareprovidedinSections5and6,respectively.Finally,weconcludethispaperwithasummary.
2.Parallelmode
2.1Parallelmodeanditsrequirements
Inparallelcomputingmode,eachPEisresponsibleforasubsetoftheimagedataandpossessesitsownmemory.Duringtheencryption,theremaybesomecommunicationbetweenPEs(seeFig.1).
Toallowparallelimageencryption,theconventionalCBC-likemodemustbeeliminated.However,thiswillcauseanewproblem,i.e.howtofulfillthediffusionrequirementwithoutsuchmode.Besides,therearisesomeadditionalrequirementsforparallelimageencryption:
1.ComputationloadbalanceThetotaltimeofaparallelimageencryptionschemeisdeterminedbytheslowestPE,sinceotherPEshavetowaituntilsuchPEfinishesitswork.ThereforeagoodparallelcomputationmodecanbalancethetaskdistributedtoeachPE.
2.CommunicationloadbalanceThereusuallyexistslotsofcommunicationbetweenPEs.Forthesamereasonasofcomputationload,thecommunicationloadshouldbecarefullybalanced.
3.CriticalareamanagementWhencomputinginaparallelmode,manyPEsmayreadorwritethesameareaofmemory(i.e.criticalarea)simultaneously,whichoftencausesunexpectedexecutionoftheprogram.Itisthusnecessarytousesomeparalleltechniquestomanagethecriticalarea.
2.2Aparallelimageencryptionframework
Tofulfilltheaboverequirements,weproposeaparallelimageencryptionframework,whichisafour-stepprocess:
Step1:
Thewholeimageisdividedintoanumberofblocks.Step2:
EachPEisresponsibleforacertainnumberofblocks.Thepixelsinsideablockareencryptedadequatelywitheffectiveconfusionanddiffusionoperations.Step3:
Cipher-dataareexchangedviacommunicationbetweenPEstoenlargethediffusionfromablocktoabroaderscope.Step4:
Gotostep2untilthecipherimagereachestherequiredlevelofsecurity.
Instep2,diffusionisachieved,butonlywithinthesmallscopeofoneblock.Withtheaidofstep3,however,suchdiffusioneffectisbroadened.Notethatfromthecryptographicpointofview,dataexchangeinstep3isessentiallyapermutation.Afterseveraliterationsofsteps2and3,thediffusioneffectisspreadtothewholeimage.Thismeansthatatinychangeinoneplain-imagepixelwillspreadtoasubstantialamountofpixelsinthecipher-image.Tomaketheframeworksufficientlysecure,tworequirementsmustbefulfilled:
1.Theencryptionalgorithminstep2shouldbesufficientlysecurewiththecharacteristicofconfusionanddiffusionaswellassensitivitytobothplaintextandkey.
2.Thepermutationinstep3mustspreadthelocalchangetothewholeimageinafewroundsofoperations.
ThefirstrequirementcanbefulfilledbyacombinationofdifferentcryptographicelementssuchasS-box,Feistel-structure,matrixmultiplicationsandchaosmap,etc.,orwecanjustuseaconventionalcryptographicstandardsuchasAESorIDEA.Thesecondone,however,isanewtopicresultedfromthisframework.Furthermore,suchpermutationshouldhelptoachievethethreeadditionalgoalspresentedinSection2.1.Hence,thepermutationoperationisoneofthefocusesofthispaperandshouldbecarefullystudied.
Underthisparallelimageencryptionframework,weproposeanewalgorithmwhichisbasedonfourbasictransformations.Therefore,wewillfirstintroducethosetransformationsbeforedescribingouralgorithm.
3.Transformations
3.1A-transformation
InA-transformation,‘A’standsforaddition.Itcanbeformallydefinedasfollow:
a+b=c,wherea,b,cϵG,G=GF(28),andtheadditionisdefinedasthebitwiseXORoperation.ThetransformationAhasthreefundamentalproperties:
(2.1)a+a=0
(2.2)a+b=b+a
(2)(2.3)(a+b)+c=a+(b+c)
3.2M-transformation
InM-transformation,‘M’standsformixingofdata.First,weintroducethesumtransformation:
sum:
m×
n→G
thensum(I)isdefinedas:
sum
(1)=a(ij)
NowwegivethedefinitionofM-transformationasfollows:
M:
n→m×
n
LetM(I)=CI=a(ij)C=(c(ij)(3)c(ij)=a(ij)+sum(I)
ItiseasytoprovethefollowingpropertiesoftheM-transformation:
(5.1)M(M(I))=I(5)(4)
(5.2)M(I+J)=M(I)+M(J)
(5.3)M(kj)=kM(I),wherekI=1,k∈N
ItshouldbenotedthatalltheadditionoperationsfromaretheA-transformationindeed.
3.3S-transformation
InS-transformation,‘S’standsforS-boxsubstitution.TherearelotsofwaystoconstructanS-box,amongwhichthechaoticapproachisagoodcandidate.Forexample,TangetalpresentedamethodtodesignS-boxbasedondiscretizedlogisticmapandBakermap[10].Followingthiswork,Chenetal.proposedanothermethodtoobtainanS-box,whichleadstoabetterperformance[11].Theprocessisdescribedasfollows:
Step1:
SelectaninitialvaluefortheChebyshevmap.TheniteratethemaptogeneratetheinitialS-boxtable.
Step2:
Pileupthe2Dtabletoa3Done.
Step3:
Usethediscretized3DBakermaptoshufflethetableformanytimes.Finally,transformthe3Dtablebackto2DtoobtainthedesiredS-box.ExperimentalresultsshowthattheresultantS-boxisidealforcryptographicapplications.Theapproachisalsocalled‘dynamic’asdifferentS-boxesareobtainedwhentheinitialvalueofChebyshevmapischanged.However,forthesakeofsimplicityandperformance,weuseafixedS-box,i.e.theexamplegivenin[11](seeTable1).
3.4K-transformation
InK-transformation,‘K’standsforKolmogorovflow,whichisoftencalledgeneralizedBakermap[3].TheapplicationofKolmogorovflowforimageencryptionwasfirstproposedbyPichlerandScharinger[1,2].ThediscreteversionofK-flowisgivenby:
whered=(n1,