图像加密英文翻译 译文Word文档格式.docx

上传人:b****8 文档编号:22924323 上传时间:2023-02-06 格式:DOCX 页数:27 大小:54.09KB
下载 相关 举报
图像加密英文翻译 译文Word文档格式.docx_第1页
第1页 / 共27页
图像加密英文翻译 译文Word文档格式.docx_第2页
第2页 / 共27页
图像加密英文翻译 译文Word文档格式.docx_第3页
第3页 / 共27页
图像加密英文翻译 译文Word文档格式.docx_第4页
第4页 / 共27页
图像加密英文翻译 译文Word文档格式.docx_第5页
第5页 / 共27页
点击查看更多>>
下载资源
资源描述

图像加密英文翻译 译文Word文档格式.docx

《图像加密英文翻译 译文Word文档格式.docx》由会员分享,可在线阅读,更多相关《图像加密英文翻译 译文Word文档格式.docx(27页珍藏版)》请在冰豆网上搜索。

图像加密英文翻译 译文Word文档格式.docx

学生姓名:

覃洁文

学号:

1000710222

指导教师单位:

姓名:

王东

职称:

副教授

 

2014年6月7日

Parallelimageencryptionalgorithmbasedondiscretizedchaoticmap

Abstract

Recently,avarietyofchaos-basedalgorithmswereproposedforimageencryption.Nevertheless,noneofthemworksefficientlyinparallelcomputingenvironment.Inthispaper,weproposeaframeworkforparallelimageencryption.Basedonthisframework,anewalgorithmisdesignedusingthediscretizedKolmogorovflowmap.Itfulfillsalltherequirementsforaparallelimageencryptionalgorithm.Moreover,itissecureandfast.Thesepropertiesmakeitagoodchoiceforimageencryptiononparallelcomputingplatforms.

1.Introduction

Inrecentyears,thereisarapidgrowthinthetransmissionofdigitalimagesthroughcomputernetworksespeciallytheInternet.Inmostcases,thetransmissionchannelsarenotsecureenoughtopreventillegalaccessbymaliciouslisteners.Thereforethesecurityandprivacyofdigitalimageshavebecomeamajorconcern.Manyimageencryptionmethodshavebeenproposed,ofwhichthechaos-basedapproachisapromisingdirection[1–9].

Ingeneral,chaoticsystemspossessseveralpropertieswhichmakethemessentialcomponentsinconstructingcryptosystems:

(1)Randomness:

chaoticsystemsgeneratelong-period,random-likechaoticsequenceinadeterministicway.

(2)Sensitivity:

atinydifferenceoftheinitialvalueorsystemparametersleadstoavastchangeofthechaoticsequences.

(3)Simplicity:

simpleequationscangeneratecomplexchaoticsequences.

(4)Ergodicity:

achaoticstatevariablegoesthroughallstatesinitsphasespace,andusuallythosestatesaredistributeduniformly.

Inadditiontotheaboveproperties,sometwo-dimensional(2D)chaoticmapsareinherentexcellentalternativesforpermutationofimagepixels.PichlerandScharingerproposedawaytopermutetheimageusingKolmogorovflowmapbeforeadiffusionoperation[1,2].Later,Fridrichextendedthismethodtoamoregeneralizedway[3].Chenetal.proposedanimageencryptionschemebasedon3Dcatmaps[4].Lianetal.proposedanotheralgorithmbasedonstandardmap[5].Actually,thosealgorithmsworkunderthesameframework:

allthepixelsarefirstpermutedwithadiscretizedchaoticmapbeforetheyareencryptedonebyoneunderthecipherblockchain(CBC)modewherethecipherofthecurrentpixelisinfluencedbythecipherofpreviouspixels.Theaboveprocessesrepeatforseveralroundsandfinallythecipher-imageisobtained.

Thisframeworkisveryeffectiveinachievingdiffusionthroughoutthewholeimage.However,itisnotsuitableforrunninginaparallelcomputingenvironment.Thisisbecausetheprocessingofthecurrentpixelcannotstartuntilthepreviousonehasbeenencrypted.Thecomputationisstillinasequentialmodeevenifthereismorethanoneprocessingelement(PE).ThislimitationrestrictsitsapplicationplatformsincemanydevicesbasedonFPGA/CPLDordigitalcircuitscansupportparallelprocessing.Withtheparallelcomputingtechnique,thespeedofencryptionisgreatlyaccelerated.

Anothershortcomingofchaos-basedimageencryptionschemesistherelativelyslowcomputingspeed.Theprimaryreasonisthatchaos-basedciphersusuallyneedalargeamountofrealnumbermultiplicationanddivisionoperations,whichcostvastofcomputation.Thecomputationalefficiencywillbeincreasesubstantiallyiftheencryptionalgorithmscanbeexecutedonaparallelprocessingplatform.

Inthispaper,weproposeaframeworkforparallelimageencryption.Undersuchframework,wedesignasecureandfastalgorithmthatfulfillsalltherequirementsforparallelimageencryption.Therestofthepaperisarrangedasfollows.Section2introducestheparalleloperatingmodeanditsrequirements.Section3presentsthedefinitionsandpropertiesoffourtransformationswhichformtheencryption/decryptionalgorithm.InSection4,theprocessesofencryption,decryptionandkeyschedulingwillbedescribedindetail.ExperimentalresultsandtheoreticalanalysesareprovidedinSections5and6,respectively.Finally,weconcludethispaperwithasummary.

2.Parallelmode

2.1Parallelmodeanditsrequirements

Inparallelcomputingmode,eachPEisresponsibleforasubsetoftheimagedataandpossessesitsownmemory.Duringtheencryption,theremaybesomecommunicationbetweenPEs(seeFig.1).

Toallowparallelimageencryption,theconventionalCBC-likemodemustbeeliminated.However,thiswillcauseanewproblem,i.e.howtofulfillthediffusionrequirementwithoutsuchmode.Besides,therearisesomeadditionalrequirementsforparallelimageencryption:

1.ComputationloadbalanceThetotaltimeofaparallelimageencryptionschemeisdeterminedbytheslowestPE,sinceotherPEshavetowaituntilsuchPEfinishesitswork.ThereforeagoodparallelcomputationmodecanbalancethetaskdistributedtoeachPE.

2.CommunicationloadbalanceThereusuallyexistslotsofcommunicationbetweenPEs.Forthesamereasonasofcomputationload,thecommunicationloadshouldbecarefullybalanced.

3.CriticalareamanagementWhencomputinginaparallelmode,manyPEsmayreadorwritethesameareaofmemory(i.e.criticalarea)simultaneously,whichoftencausesunexpectedexecutionoftheprogram.Itisthusnecessarytousesomeparalleltechniquestomanagethecriticalarea.

2.2Aparallelimageencryptionframework

Tofulfilltheaboverequirements,weproposeaparallelimageencryptionframework,whichisafour-stepprocess:

Step1:

Thewholeimageisdividedintoanumberofblocks.Step2:

EachPEisresponsibleforacertainnumberofblocks.Thepixelsinsideablockareencryptedadequatelywitheffectiveconfusionanddiffusionoperations.Step3:

Cipher-dataareexchangedviacommunicationbetweenPEstoenlargethediffusionfromablocktoabroaderscope.Step4:

Gotostep2untilthecipherimagereachestherequiredlevelofsecurity.

Instep2,diffusionisachieved,butonlywithinthesmallscopeofoneblock.Withtheaidofstep3,however,suchdiffusioneffectisbroadened.Notethatfromthecryptographicpointofview,dataexchangeinstep3isessentiallyapermutation.Afterseveraliterationsofsteps2and3,thediffusioneffectisspreadtothewholeimage.Thismeansthatatinychangeinoneplain-imagepixelwillspreadtoasubstantialamountofpixelsinthecipher-image.Tomaketheframeworksufficientlysecure,tworequirementsmustbefulfilled:

1.Theencryptionalgorithminstep2shouldbesufficientlysecurewiththecharacteristicofconfusionanddiffusionaswellassensitivitytobothplaintextandkey.

2.Thepermutationinstep3mustspreadthelocalchangetothewholeimageinafewroundsofoperations.

ThefirstrequirementcanbefulfilledbyacombinationofdifferentcryptographicelementssuchasS-box,Feistel-structure,matrixmultiplicationsandchaosmap,etc.,orwecanjustuseaconventionalcryptographicstandardsuchasAESorIDEA.Thesecondone,however,isanewtopicresultedfromthisframework.Furthermore,suchpermutationshouldhelptoachievethethreeadditionalgoalspresentedinSection2.1.Hence,thepermutationoperationisoneofthefocusesofthispaperandshouldbecarefullystudied.

Underthisparallelimageencryptionframework,weproposeanewalgorithmwhichisbasedonfourbasictransformations.Therefore,wewillfirstintroducethosetransformationsbeforedescribingouralgorithm.

3.Transformations

3.1A-transformation

InA-transformation,‘A’standsforaddition.Itcanbeformallydefinedasfollow:

a+b=c,wherea,b,cϵG,G=GF(28),andtheadditionisdefinedasthebitwiseXORoperation.ThetransformationAhasthreefundamentalproperties:

(2.1)a+a=0

(2.2)a+b=b+a

(2)(2.3)(a+b)+c=a+(b+c)

3.2M-transformation

InM-transformation,‘M’standsformixingofdata.First,weintroducethesumtransformation:

sum:

n→G

thensum(I)isdefinedas:

sum

(1)=a(ij)

NowwegivethedefinitionofM-transformationasfollows:

M:

n→m×

n

LetM(I)=CI=a(ij)C=(c(ij)(3)c(ij)=a(ij)+sum(I)

ItiseasytoprovethefollowingpropertiesoftheM-transformation:

(5.1)M(M(I))=I(5)(4)

(5.2)M(I+J)=M(I)+M(J)

(5.3)M(kj)=kM(I),wherekI=1,k∈N

ItshouldbenotedthatalltheadditionoperationsfromaretheA-transformationindeed.

3.3S-transformation

InS-transformation,‘S’standsforS-boxsubstitution.TherearelotsofwaystoconstructanS-box,amongwhichthechaoticapproachisagoodcandidate.Forexample,TangetalpresentedamethodtodesignS-boxbasedondiscretizedlogisticmapandBakermap[10].Followingthiswork,Chenetal.proposedanothermethodtoobtainanS-box,whichleadstoabetterperformance[11].Theprocessisdescribedasfollows:

Step1:

SelectaninitialvaluefortheChebyshevmap.TheniteratethemaptogeneratetheinitialS-boxtable.

Step2:

Pileupthe2Dtabletoa3Done.

Step3:

Usethediscretized3DBakermaptoshufflethetableformanytimes.Finally,transformthe3Dtablebackto2DtoobtainthedesiredS-box.ExperimentalresultsshowthattheresultantS-boxisidealforcryptographicapplications.Theapproachisalsocalled‘dynamic’asdifferentS-boxesareobtainedwhentheinitialvalueofChebyshevmapischanged.However,forthesakeofsimplicityandperformance,weuseafixedS-box,i.e.theexamplegivenin[11](seeTable1).

3.4K-transformation

InK-transformation,‘K’standsforKolmogorovflow,whichisoftencalledgeneralizedBakermap[3].TheapplicationofKolmogorovflowforimageencryptionwasfirstproposedbyPichlerandScharinger[1,2].ThediscreteversionofK-flowisgivenby:

whered=(n1,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1