AT89C52电子时钟设计.docx

上传人:b****3 文档编号:2282373 上传时间:2022-10-28 格式:DOCX 页数:9 大小:41.78KB
下载 相关 举报
AT89C52电子时钟设计.docx_第1页
第1页 / 共9页
AT89C52电子时钟设计.docx_第2页
第2页 / 共9页
AT89C52电子时钟设计.docx_第3页
第3页 / 共9页
AT89C52电子时钟设计.docx_第4页
第4页 / 共9页
AT89C52电子时钟设计.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

AT89C52电子时钟设计.docx

《AT89C52电子时钟设计.docx》由会员分享,可在线阅读,更多相关《AT89C52电子时钟设计.docx(9页珍藏版)》请在冰豆网上搜索。

AT89C52电子时钟设计.docx

AT89C52电子时钟设计

 

湖南文理学院物电学院

光电技术装配实践报告

 

实习内容:

单片机电子钟的组装

专业班级:

光电14101班

学生姓名:

李梓墅

指导教师:

彭光含

时间:

2017/05/30-2017/06/12

 

1、电子组装产品的工作原理;

利用单片机定时器完成计时功能,定时器0计时中断程序每隔0.01s中断一次并当作一个计数,设定定时1秒的中断计数初值为100,每中断一次中断计数初值减1,当减到0时,则表示1s到了,秒变量加1,同理再判断是否1min钟到了,再判断是否1h到了。

为了将时间在LED数码管上显示,可采用静态显示法和动态显示法,由于静态显示法需要译码器,数据锁存器等较多硬件,可采用动态显示法实现LED显示,通过对每位数码管的依次扫描,使对应数码管亮,同时向该数码管送对应的字码,使其显示数字。

由于数码管扫描周期很短,由于人眼的视觉暂留效应,使数码管看起来总是亮的,从而实现了各种显示。

2、原理图绘制和PCB图纸设计;

3、电路中的电子元件认识和常识;

AT89C52:

AT89C52是一个低电压,高性能CMOS8位单片机,片内含8kbytes的可反复擦写的Flash只读程序存储器和256bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89C52可以按照常规方法进行编程,也可以在线编程。

AT89C52为8位通用微处理器,采用工业标

准的C51内核,在内部功能及管脚排布上与通用的8xc52相同,其主要用于会聚调整时的功能控制。

功能包括对会聚主IC内部寄存器、数据RAM及外部接口等功能部件的初始化,会聚调整控制,会聚测试图控制,红外遥控信号IR的接收解码及与主板CPU通信等。

主要管脚有:

XTAL1(19脚)和XTAL2(18脚)为振荡器输入输出端口,外接12MHz晶振。

RST/Vpd(9脚)为复位输入端口,外接电阻电容组成的复位电路。

VCC(40脚)和VSS(20脚)为供电端口,分别接+5V电源的正负端。

P0~P3为可编程通用I/O脚,其功能用途由软件定义。

P0口

P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口。

作为输出口用时,每位能吸收电流的

方式驱动8个TTL逻辑门电路,对端口P0写“1”时,可作为高阻抗输入端用。

在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。

在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。

P1口

P1是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑

门电路。

对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。

作输入口使用时,因为内部存在上拉

电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。

与AT89C51不同之处是,P1.0和P1.1还可分别作为定时/计数器2的外部计数输入(P1.0/T2)和输入(P1.1/T2EX),

参见表1。

Flash编程和程序校验期间,P1接收低8位地址。

引脚功能特性

P1.0

T2,时钟输出

P1.1

T2EX(定时/计数器2)

P2口

P2是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑

门电路。

对端口P2写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。

在访问外部程序存储器或16位地数据存储器(例如执行MOVX@DPTR指令)时,P2口送出高8位地址数据。

在访问8位地址的外部数据存储器(如执行MOVX@RI指令)时,P2口输出P2锁存器的内容。

Flash编程或校验时,P2亦接收高位地址和一些控制信号。

P3口

P3口是一组带有内部上拉电阻的8位双向I/O口。

P3口输出缓冲级可驱动(吸收或输出电流)4个TTL逻

辑门电路。

对P3口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。

此时,被外部拉低的P3口将用上拉电阻输出电流(IIL)。

P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能

P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。

RST

复位输入。

当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。

ALE/PROG

当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字

节。

一般情况下,ALE仍以时钟振荡频率的1/6输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。

要注意的是:

每当访问外部数据存储器时将跳过一个ALE脉冲。

对Flash存储器编程期间,该引脚还用于输入编程脉冲(PROG)。

如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。

该位置位后,只有一条

MOVX和MOVC指令才能将ALE激活。

此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE禁止位无效。

PSEN

程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89C52由外部程序存储器取指令(或数

据)时,每个机器周期两次PSEN有效,即输出两个脉冲。

在此期间,当访问外部数据存储器,将跳过两次PSEN信号。

EA/VPP

外部访问允许。

欲使CPU仅访问外部程序存储器(地址为0000H—FFFFH),EA端必须保持低电平(接

地)。

需注意的是:

如果加密位LB1被编程,复位时内部会锁存EA端状态。

如EA端为高电平(接Vcc端),CPU则执行内部程序存储器中的指令。

Flash存储器编程时,该引脚加上+12V的编程允许电源Vpp,当然这必须是该器件是使用12V编程电压Vpp。

XTAL1

振荡器反相放大器及内部时钟发生器的输入端。

XTAL2

振荡器反相放大器的输出端。

DS1302:

DS1302是具有涓细电流充电能力的低功耗实时时钟芯片。

它可以对年、月、日、周、时、分、秒进行计时,具有闰年补偿功能,工作电压为2.0V~5.5V。

采用三线接口与CPU进行同步通信,并可采用突发方式一次传送多个字节的时钟信号或RAM数据。

DS1302的引脚排列,其中Vcc2为主电源,VCC1为后备电源。

在主电源关闭的情况下,也能保持时钟的连续运行。

DS1302由Vcc1或Vcc2两者中的较大者供电。

当Vcc2大于Vcc1+0.2V时,Vcc2给DS1302供电。

当Vcc2小于Vcc1时,DS1302由Vcc1供电。

X1和X2是振荡源,外接32.768kHz晶振。

RST是复位/片选线,通过把RST输入驱动置高电平来启动所有的数据传送。

RST输入有两种功能:

首先,RST接通控制逻辑,允许地址/命令序列送入移位寄存器;其次,RST提供终止单字节或多字节数据传送的方法。

当RST为高电平时,所有的数据传送被初始化,允许对DS1302进行操作。

如果在传送过程中RST置为低电平,则会终止此次数据传送,I/O引脚变为高阻态。

上电运行时,在Vcc>2.0V之前,RST必须保持低电平。

只有在SCLK为低电平时,才能将RST置为高电平。

I/O为串行数据输入输出端(双向),SCLK为时钟输入端。

DS1302存在时钟精度不高,易受环境影响,出现时钟混乱等缺点。

DS1302可以用于数据记录,特别是对某些具有特殊意义的数据点的记录,能实现数据与出现该数据的时间同时记录。

这种记录对长时间的连续测控系统结果的分析及对异常数据出现的原因的查找具有重要意义。

传统的数据记录方式是隔时采样或定时采样,没有具体的时间记录,因此,只能记录数据而无法准确记录其出现的时间;若采用单片机计时,一方面需要采用计数器,占用硬件资源,另一方面需要设置中断、查询等,同样耗费单片机的资源,而且,某些测控系统可能不允许。

但是,如果在系统中采用时钟芯片DS1302,则能很好地解决这个问题。

CD4017:

CD4017是5位Johnson计数器,具有10个译码输出端,CP、CR、INH输入端。

时钟输入端的斯密特触发器具有脉冲整形功能,对输入时钟脉冲上升和下降时间无限制。

INH为低电平时,计数器在时钟上升沿计数;反之,计数功能无效。

CR为高电平时,计数器清零。

CO:

进位脉冲输出

CP:

时钟输入端

CR:

清除端

INH:

禁止端

Y0~Y9:

计数脉冲输出端

VDD:

正电源

VSS:

8550:

三极管8550是一种常用的普通三极管。

它是一种低电压,大电流,小信号的PNP型硅三极管。

8050:

三极管8050是非常常见的NPN型晶体三极管,在各种放大电路中经常看到它,应用范围很广,主要用于高频放大。

也可用作开关电路。

色环电阻:

色环电阻,是在电阻封装上(即电阻表面)涂上一定颜色的色环,来代表这个电阻的阻值。

黑,棕,红,橙,黄,绿,蓝,紫,灰,白,金,银

0,1,.2,.3,4,.5,6,.7,8,.9,.±5%,±10%

倒数第二环,表示零的个数。

最后一位,表示误差。

这个规律有一个巧记的口诀,类似彩虹七色,黑色是0,棕色是1,红橙黄绿蓝紫灰白对应2~9,金银对应5%或10%误差。

例如,红,黄,棕,金表示240欧。

色环电阻分四环和五环,通常用四环。

倒数第二环,可以是金色(代表×0.1)和银色的(代表×0.01),最后一环误差可以是无色(±20%)的。

五环电阻为精密电阻,前三环为数值,最后一环还是误差色环,通常也是金、银和棕三种颜色,金的误差为5%,银的误差为10%,棕色的误差为1%,无色的误差为20%,另外偶尔还有以绿色代表误差的,绿色的误差为0.5%。

精密电阻通常用于军事,航天等方面。

色环实际上是早期为了帮助人们分辨不同阻值而设定的标准。

现在应用还是很广泛的,如家用电器、电子仪表、电子设备中常常可以见到。

但由于色环电阻比较大,不适合现代高度集成的性能要求。

3、焊接工艺技巧

1.掌握好加热时间

  锡焊时可以采用不同的加热速度,例如烙铁头形状不良,用小烙铁焊大焊件时我们不得不延长时间以满足锡料温度的要求。

在大多数情况下延长加热时间对电子产品装配都是有害的,这是因为

  

(1)焊点的结合层由于长时间加热而超过合适的厚度引起焊点性能劣化。

  

(2)印制板,塑料等材料受热过多会变形变质。

  (3)元器件受热后性能变化甚至失效。

  (4)焊点表面由于焊剂挥发,失去保护而氧化。

  结论:

在保证焊料润湿焊件的前提下时间越短越好。

  2.保持合适的温度

  如果为了缩短加热时间而采用高温烙铁焊校焊点,则会带来另一方面的问题:

焊锡丝中的焊剂没有足够的时间

  在被焊面上漫流而过早挥发失效;焊料熔化速度过快影响焊剂作用的发挥;由于温度过高虽加热时间短也造成过热现象。

  结论:

保持烙铁头在合理的温度范围。

一般经验是烙铁头温度比焊料熔化温度高50℃较为适宜。

  理想的状态是较低的温度下缩短加热时间,尽管这是矛盾的,但在实际操作中我们可以通过操作手法获得令人满意的解决方法。

  3.用烙铁头对焊点施力是有害的

  烙铁头把热量传给焊点主要靠增加接触面积,用烙铁对焊点加力对加热是徒劳的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1