高考数学一轮复习 93 直线与平面垂直教案文档格式.docx

上传人:b****8 文档编号:22728688 上传时间:2023-02-05 格式:DOCX 页数:16 大小:163.11KB
下载 相关 举报
高考数学一轮复习 93 直线与平面垂直教案文档格式.docx_第1页
第1页 / 共16页
高考数学一轮复习 93 直线与平面垂直教案文档格式.docx_第2页
第2页 / 共16页
高考数学一轮复习 93 直线与平面垂直教案文档格式.docx_第3页
第3页 / 共16页
高考数学一轮复习 93 直线与平面垂直教案文档格式.docx_第4页
第4页 / 共16页
高考数学一轮复习 93 直线与平面垂直教案文档格式.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

高考数学一轮复习 93 直线与平面垂直教案文档格式.docx

《高考数学一轮复习 93 直线与平面垂直教案文档格式.docx》由会员分享,可在线阅读,更多相关《高考数学一轮复习 93 直线与平面垂直教案文档格式.docx(16页珍藏版)》请在冰豆网上搜索。

高考数学一轮复习 93 直线与平面垂直教案文档格式.docx

5.设正方体ABCD—A1B1C1D1的棱长为1,则

(1)A点到CD1的距离为________;

(2)A点到BD1的距离为________;

(3)A点到面BDD1B1的距离为_____________;

(4)A点到面A1BD的距离为_____________;

(5)AA1与面BB1D1D的距离为__________.

(1)

(2)(3)(4)(5)

●典例剖析

【例1】已知直线a⊥平面α,直线b⊥平面α,O、A为垂足.求证:

a∥b.

证明:

以O为原点直线a为z轴,建立空间直角坐标系,i、j、k为坐标向量,直线a、b的向量分别为a、b.设b=(x,y,z),∵b⊥α,∴b·

i=x=0,b·

j=y=0,b=(0,0,z)=zk.∴b∥k,a∥b.

评述:

因证明两直线平行,也就是证明其方向向量共线,所以,利用两向量共线的充要条件证明两直线平行是新教材基本的数学方法,应做到熟练运用.

【例2】已知PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过A点作AE⊥PC于点E,求证:

AE⊥平面PBC.

∵PA⊥平面ABC,∴PA⊥BC.

又∵AB是⊙O的直径,∴BC⊥AC.而PC∩AC=C,∴BC⊥平面PAC.

又∵AE在平面PAC内,∴BC⊥AE.

∵PC⊥AE,且PC∩BC=C,

∴AE⊥平面PBC.

思考讨论

证明直线与平面垂直的常用方法有:

利用线面垂直的定义;

利用线面垂直的判定定理;

利用“若直线a∥直线b,直线a⊥平面α,则直线b⊥平面α”.

【例3】在直三棱柱ABC—A1B1C1中,B1C1=A1C1,A1B⊥AC1,求证:

A1B⊥B1C.

取A1B1的中点D1,连结C1D1.

∵B1C1=A1C1,∴C1D1⊥ABB1A1.

连结AD1,则AD1是AC1在平面ABB1A1内的射影,

∵A1B⊥AC1,

∴A1B⊥AD1.取AB的中点D,连结CD、B1D,则B1D∥AD1,且B1D是B1C在平面ABB1A1内的射影.

∵B1D⊥A1B,∴A1B⊥B1C.

证明异面直线垂直的常用方法有:

证明其中一直线垂直于另外一直线所在的平面;

利用三垂线定理及其逆定理.

●闯关训练

夯实基础

1.PA垂直于以AB为直径的圆所在的平面,C为圆上异于A、B的任一点,则下列关系不正确的是

A.PA⊥BCB.BC⊥平面PACC.AC⊥PBD.PC⊥BC

由三垂线定理知AC⊥PB,故选C.

C

2.△ABC的三个顶点A、B、C到平面α的距离分别为2cm、3cm、4cm,且它们在α的同侧,则△ABC的重心到平面α的距离为_____________.

如下图,设A、B、C在平面α上的射影分别为A′、B′、C′,△ABC的重心为G,连结CG交AB于中点E,又设E、G在平面α上的射影分别为E′、G′,则E′∈A′B,G′∈C′E,EE′=(A′A+B′B)=,CC′=4,CG∶GE=2∶1,

在直角梯形EE′C′C中可求得GG′=3.

3cm

3.Rt△ABC在平面α内的射影是△A1B1C1,设直角边AB∥α,则△A1B1C1的形状是_____________三角形.

根据两平行平面的性质及平行角定理,知△A1B1C的形状仍是Rt△.

直角

4.如下图,在正方体ABCD—A1B1C1D1中,M为CC1的中点,AC交BD于点O,求证:

A1O⊥平面MBD.

连结MO.

∵DB⊥A1A,DB⊥AC,A1A∩AC=A,∴DB⊥平面A1ACC1.

又A1O平面A1ACC1,∴A1O⊥DB.

在矩形A1ACC1中,tan∠AA1O=,tan∠MOC=,∴∠AA1O=∠MOC,

则∠A1OA+∠MOC=90°

.∴A1O⊥OM.

∵OM∩DB=O,∴A1O⊥平面MBD.

5.在三棱锥S—ABC中,N是S在底面ABC上的射影,且N在△ABC的AB边的高CD上,点M∈SC,截面MAB和底面ABC所成的二面角M—AB—C等于∠NSC,求证:

SC⊥截面MAB.

∵CD是SC在底面ABC上的射影,AB⊥CD,∴AB⊥SC.连结MD.∵∠MDC=

∠NSC,∴DM⊥SC.∵AB∩DM=D,∴SC⊥截面MAB.

培养能力

6.如下图,在△ABC中,∠ACB=90°

,AB=8,∠BAC=60°

,PC⊥平面ABC,PC=4,M为AB边上的一个动点,求PM的最小值.

解:

∵P是定点,要使PM的值最小,只需使PM⊥AB即可.

要使PM⊥AB,由于PC⊥平面ABC,∴只需使CM⊥AB即可.

∵∠BAC=60°

,AB=8,∴AC=AB·

cos60°

=4.

∴CM=AC·

sin60°

=4·

=2.∴PM===2.

7.如下图,P为△ABC所在平面外一点,PA⊥平面ABC,∠ABC=90°

,AE⊥PB于E,AF⊥PC于F,

求证:

(1)BC⊥平面PAB;

(2)AE⊥平面PBC;

(3)PC⊥平面AEF.

(1)PA⊥平面ABC

BC⊥平面PAB.

PA⊥BC

AB⊥BC

PA∩AB=A

(2)AE平面PAB,由

(1)知AE⊥BC

AE⊥PB

PB∩BC=B

PC⊥平面AEF.

(3)PC平面PBC,由

(2)知PC⊥AE

PC⊥AF

AE∩AF=A

8.在四棱锥P—ABCD中,底面ABCD是矩形,AB=2,BC=a,又侧棱PA⊥底面ABCD.

(1)当a为何值时,BD⊥平面PAC?

试证明你的结论.

(2)当a=4时,求证:

BC边上存在一点M,使得PM⊥DM.

(3)若在BC边上至少存在一点M,使PM⊥DM,求a的取值范围.

分析:

本题第

(1)问是寻求BD⊥平面PAC的条件,即BD垂直平面PAC内两相交直线,易知BD⊥PA,问题归结为a为何值时,BD⊥AC,从而知ABCD为正方形.

(1)解:

当a=2时,ABCD为正方形,则BD⊥AC.

又∵PA⊥底面ABCD,BD平面ABCD,∴BD⊥PA.∴BD⊥平面PAC.

故当a=2时,BD⊥平面PAC.

(2)证明:

当a=4时,取BC边的中点M,AD边的中点N,连结AM、DM、MN.

∵ABMN和DCMN都是正方形,

∴∠AMD=∠AMN+∠DMN=45°

+45°

=90°

,即DM⊥AM.又PA⊥底面ABCD,由三垂线定理得,PM⊥DM,故当a=4时,BC边的中点M使PM⊥DM.

(3)解:

设M是BC边上符合题设的点M,

∵PA⊥底面ABCD,∴DM⊥AM.

因此,M点应是以AD为直径的圆和BC边的一个公共点,则AD≥2AB,即a≥4为所求.

本题的解决中充分运用了平面几何的相关知识.因此,立体几何解题中,要注意有关的平面几何知识的运用.事实上,立体几何问题最终是在一个或几个平面中得以解决的.

探究创新

9.正方形ABCD中,AB=2,E是AB边的中点,F是BC边上一点,将△AED及△DCF折起(如下图),使A、C点重合于A′点.

(1)证明:

A′D⊥EF;

(2)当F为BC的中点时,求A′D与平面DEF所成的角;

(3)当BF=BC时,求三棱锥A′—EFD的体积.

∵A′D⊥A′E,A′D⊥A′F,

∴A′D⊥平面A′EF.∴A′D⊥EF.

(2)解:

取EF的中点G,连结A′G、DG.

∵BE=BF=1,∠EBF=90°

,∴EF=.

又∵A′E=A′F=1,∴∠EA′F=90°

,A′G⊥EF,得A′G=.

∵A′G⊥EF,A′D⊥EF,A′G∩A′D=A′,

∴EF⊥平面A′DG.∴平面DEF⊥平面A′DG.

作A′H⊥DG于H,得A′H⊥平面DEF,∴∠A′DG为A′D与平面DEF所成的角.

在Rt△A′DG中,A′G=,A′D=2,

∴∠A′DG=arctan.

∵A′D⊥平面A′EF,∴A′D是三棱锥D—A′EF的高.

又由BE=1,BF=推出EF=,可得S=,

VA′-EFD=VD-A′EF=·

A′D=·

·

2=.

●思悟小结

1.直线与平面垂直是直线与平面相交的一种特殊情况,应熟练掌握直线与平面垂直的定义、判定定理、性质定理,并能依据条件灵活运用.

2.注意线面垂直与线线垂直的关系和转化.

3.运用三垂线定理及其逆定理的关键在于确定斜线在平面上的射影,而确定射影的关键又是“垂足”,如果“垂足”定了,那么“垂足”和“斜足”的连线就是斜线在平面上的射影.

●教师下载中心

教学点睛

1.使学生熟练掌握线面垂直的判定定理及性质定理.

2.通过例题的讲解给学生总结归纳证明线面垂直的常见方法:

(1)证直线与平面内的两条相交直线都垂直;

(2)证与该线平行的直线与已知平面垂直;

(3)借用面面垂直的性质定理;

(4)同一法.

拓展题例

【例1】(xx年全国)下列五个正方体图形中,l是正方体的一条对角线,点M、N、P分别是其所在棱的中点,能得出l⊥平面MNP的图形的序号是_____________.

对①,易用三垂线定理证明l⊥MN,l⊥PM,故l⊥平面MNP;

对②,易知l⊥平面ABC,但点M、N位于该平面的两侧,故平面MNP不平行平面ABC,从而l不垂直平面MNP;

同理,③也不垂直;

对④,易证l⊥MN,l⊥MP,故④正确;

对⑤,易知平面MNP∥平面ABC,而l⊥平面ABC,故⑤正确.

①④⑤

【例2】(xx年春季上海)如下图,点P为斜三棱柱ABC—A1B1C1的侧棱BB1上一点,PM⊥BB1交AA1于点M,PN⊥BB1交CC1于点N.

(1)求证:

CC1⊥MN;

(2)在任意△DEF中有余弦定理:

DE2=DF2+EF2-2DF·

EFcos∠DFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.

∵CC1∥BB1CC1⊥PM,CC1⊥PN,

∴CC1⊥平面PMNCC1⊥MN.

在斜三棱柱ABC—A1B1C1中,有S=S2+S2-2S·

Scosα,其中α为平面CC1B1B与平面CC1A1A所成的二面角.

∵CC1⊥平面PMN,∴上述的二面角为∠MNP.

在△PMN中,PM2=PN2+MN2-2PN·

MNcos∠MNPPM2CC12=PN2CC12+MN2CC12-

2(PN·

CC1)·

(MN·

CC1)cos∠MNP.

由于S=PN·

CC1,S=MN·

CC1,S=PM·

BB1,

∴有S=S2+S2-2S·

Scosα.

 

2019-2020年高考数学一轮复习9.3空间几何体的表面积和体积精品教学案(学生版)新人教版

【考纲解读】

了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).

【考点预测】

高考对此部分内容考查的热点与命题趋势为:

1.立体几何是历年来高考重点内容之一,在选择题、填空题与解答题中均有可能出现,难度不大,主要考查空间中线线、线面、面面的位置关系的判定与证明,考查表面积与体积的求解,考查三视图等知识,在考查立体几何基础知识的同时,又考查数形结合思想、转化与化归等数学思想,以及分析问题、解决问题的能力.

2.xx年的高考将会继续保持稳定,坚持考查立体几何的基础知识,命题形式相对会较稳定.

【要点梳理】

1.多面体的面积和体积公式

名称

侧面积(S侧)

全面积(S全)

体积(V)

棱柱

直截面周长×

l

S侧+2S底

S底·

h=S直截面·

h

直棱柱

ch

棱锥

各侧面积之和

S侧+S底

正棱锥

ch′

棱台

各侧面面积之和

S侧+S上底+S下底

h(S上底+S下底+)

正棱台

(c+c′)h′

表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。

2.旋转体的面积和体积公式

圆柱

圆锥

圆台

S侧

2πrl

πrl

π(r1+r2)l

S全

2πr(l+r)

πr(l+r)

π(r1+r2)l+π(r21+r22)

4πR2

V

πr2h(即πr2l)

πr2h

πh(r21+r1r2+r22)

πR3

表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。

【例题精析】

考点一 表面积

例1.(xx年高考上海卷文科5)一个高为2的圆柱,底面周长为,该圆柱的表面积为.

【变式训练】

1.一个圆柱的侧面积展开图是一个正方形,这个圆柱的全面积与侧面积的比是()

A.B.C.D.

考点二 体积

例2.(xx年高考江苏卷7)如图,在长方体中,,,则四棱锥的体积为cm3.

2.(xx年高考上海卷理科8)若一个圆锥的侧面展开图是面积

为的半圆面,则该圆锥的体积为.

【易错专区】

问题:

表面积与体积的综合问题

例.(xx年高考上海卷理科14)如图,与是四面体中互相垂直的棱,,若,且

,其中、为常数,则四面体的体积的最大值是.

【课时作业】

1.(xx年高考新课标全国卷文科8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为

,则此球的体积为()

(A)

π(B)4

π(C)4

π(D)6

π

2.如图,三棱柱ABC—A1B1C1中,若E、F分别为AB、AC的中点,平面EB1C1将三棱柱分成体积为V1、V2的两部分,那么V1∶V2=_____。

3.(xx年高考福建卷文科19)如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。

(1)求三棱锥A-MCC1的体积;

(2)当A1M+MC取得最小值时,求证:

B1M⊥平面MAC。

【考题回放】

1.(北京市东城区xx年1月高三考试文科)一个几何体的三视图如图所示,则该几何体的体积为

(A)(B)

(C)(D)

2.(xx年高考山东卷文科13)如图,正方体的棱长为1,E为线段上的一点,则三棱锥的体积为.

3.(xx年高考陕西卷文科18)(本小题满分12分)直三棱柱ABC-A1B1C1中,AB=AA1,=

(Ⅰ)证明;

(Ⅱ)已知AB=2,BC=,求三棱锥的体积

4.(北京市西城区xx年4月高三第一次模拟)如图,矩形中,,.,分别在线段和上,∥,将矩形沿折起.记折起后的矩形为,且平面平面.

(Ⅰ)求证:

∥平面;

(Ⅱ)若,求证:

(Ⅲ)求四面体体积的最大值.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1