人教版小学六年级数学总复习资料23页已纠错Word文档格式.docx

上传人:b****8 文档编号:22668008 上传时间:2023-02-05 格式:DOCX 页数:19 大小:23.04KB
下载 相关 举报
人教版小学六年级数学总复习资料23页已纠错Word文档格式.docx_第1页
第1页 / 共19页
人教版小学六年级数学总复习资料23页已纠错Word文档格式.docx_第2页
第2页 / 共19页
人教版小学六年级数学总复习资料23页已纠错Word文档格式.docx_第3页
第3页 / 共19页
人教版小学六年级数学总复习资料23页已纠错Word文档格式.docx_第4页
第4页 / 共19页
人教版小学六年级数学总复习资料23页已纠错Word文档格式.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

人教版小学六年级数学总复习资料23页已纠错Word文档格式.docx

《人教版小学六年级数学总复习资料23页已纠错Word文档格式.docx》由会员分享,可在线阅读,更多相关《人教版小学六年级数学总复习资料23页已纠错Word文档格式.docx(19页珍藏版)》请在冰豆网上搜索。

人教版小学六年级数学总复习资料23页已纠错Word文档格式.docx

4、长方体(V:

体积s:

面积a:

长b:

宽h:

高)

(1)表面积(长×

宽+长×

高+宽×

高)×

2S=2(ab+ah+bh)

(2)体积=长×

宽×

高V=abh

5、三角形(s:

底h:

高)

面积=底×

高÷

2s=ah÷

2

三角形高=面积×

底三角形底=面积×

6、平行四边形(s:

高s=ah

7、梯形(s:

上底b:

下底h:

面积=(上底+下底)×

2s=(a+b)×

2

8、圆形(S:

面积C:

周长лd=直径r=半径)

(1)周长=直径×

л=2×

л×

半径C=лd=2лr

(2)面积=半径×

半径×

л

9、圆柱体(v:

体积h:

高s:

底面积r:

底面半径c:

底面周长)

(1)侧面积=底面周长×

高=ch(2лr或лd)

(2)表面积=侧面积+底面积×

(3)体积=底面积×

高(4)体积=侧面积÷

半径

10、圆锥体(v:

底面半径)

体积=底面积×

3

11、总数÷

总份数=平均数

15、相遇问题

相遇路程=速度和×

相遇时间

相遇时间=相遇路程÷

速度和

速度和=相遇路程÷

16、浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷

溶液的重量×

100%=浓度

浓度=溶质的重量

浓度=溶液的重量

17、利润与折扣问题

利润=售出价-成本

利润率=利润÷

成本×

100%=(售出价÷

成本-1)×

100%

涨跌金额=本金×

涨跌百分比

利息=本金×

利率×

时间

税后利息=本金×

时间×

(1-20%)

常用单位换算

长度单位换算

1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米

面积单位换算

1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米

1平方分米=100平方厘米1平方厘米=100平方毫米

体(容)积单位换算

1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升

1立方厘米=1毫升1立方米=1000升

重量单位换算

1吨=1000千克1千克=1000克1千克=1公斤

人民币单位换算

1元=10角1角=10分1元=100分

时间单位换算

1世纪=100年1年=12月大月(31天)有:

1\3\5\7\8\10\12月小月(30天)的有:

4\6\9\11月

平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时

1时=60分1分=60秒1时=3600秒

分数的基本性质

分数的基本性质:

分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

1.被除数÷

除数=被除数/除数

2.因为零不能作除数,所以分数的分母不能为零。

3.被除数相当于分子,除数相当于分母。

棵树=段数+1棵树=总路程÷

株距+1

株距=总路程÷

(棵树-1)总路程=株距×

(棵树-1)

沿周长植树

棵树=总路程÷

株距

棵树

总路程=株距×

例沿公路一旁埋电线杆301根,每相邻的两根的间距是50米。

后来全部改装,只埋了201根。

求改装后每相邻两根的间距。

(13)鸡兔问题:

已知“鸡兔”的总头数和总腿数。

求“鸡”和“兔”各多少只的一类应用题。

通常称为“鸡兔问题”又称鸡兔同笼问题

解题关键:

解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。

解题规律:

(总腿数-鸡腿数×

总头数)÷

一只鸡兔腿数的差=兔子只数

兔子只数=(总腿数-2×

如果假设全是兔子,可以有下面的式子:

鸡的只数=(4×

总头数-总腿数)÷

兔的头数=总头数-鸡的只数

例鸡兔同笼共50个头,170条腿。

问鸡兔各有多少只?

兔子只数(170-2×

50)÷

2=35(只)

鸡的只数50-35=15(只)

-

(二)分数和百分数的应用

3分数除法应用题:

求一个数是另一个数的几分之几(或百分之几)是多少。

特征:

已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。

“一个数”是比较量,“另一个数”是标准量。

求分率或百分率,也就是求他们的倍数关系。

4出勤率

发芽率=发芽种子数/试验种子数×

小麦的出粉率=面粉的重量/小麦的重量×

产品的合格率=合格的产品数/产品总数×

职工的出勤率=实际出勤人数/应出勤人数×

5工程问题:

是分数应用题的特例,它与整数的工作问题有着密切的联系。

它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。

数量关系式:

工作总量=工作效率×

工作时间

工作效率=工作总量÷

工作时间=工作总量÷

工作效率

工作总量÷

工作效率和=合作时间

6纳税

纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

缴纳的税款叫应纳税款。

应纳税额与各种收入的(销售额、营业额、应纳税所得额……)的比率叫做税率。

*利息

存入银行的钱叫做本金。

取款时银行多支付的钱叫做利息。

利息与本金的比值叫做利率。

利息=本金×

(三)单位之间的换算

*1毫米=1000微米*1厘米=10毫米*1分米=10厘米*1米=1000毫米*1千米=1000米

二面积

(一)什么是面积

面积,就是物体所占平面的大小。

对立体物体的表面的多少的测量一般称表面积。

(二)常用的面积单位

*平方毫米*平方厘米*平方分米*平方米*平方千米

(三)面积单位的换算

*1平方厘米=100平方毫米*1平方分米=100平方厘米*1平方米=100平方分米

*1公倾=10000平方米*1平方公里=100公顷

三体积和容积

(一)什么是体积、容积

体积,就是物体所占空间的大小。

(二)常用单位

1体积单位

*立方米*立方分米*立方厘米

2容积单位*升*毫升

(三)单位换算

*1立方米=1000立方分米

*1立方分米=1000立方厘米

2容积单位

*1升=1000毫升

*1升=1立方米

*1毫升=1立方厘米

四质量

(一)什么是质量

质量,就是表示表示物体有多重。

*吨t*千克kg*克g

(三)常用换算

*一吨=1000千克

*1千克=1000克

五时间

(一)什么是时间

是指有起点和终点的一段时间

世纪、年、月、日、时、分、秒

*1世纪=100年

*1年=365天平年

*一年=366天闰年

*一、三、五、七、八、十、十二是大月大月有31天

*四、六、九、十一是小月小月小月有30天

*平年2月有28天闰年2月有29天

*1天=24小时

*1小时=60分

*一分=60秒

*1元=10角

*1角=10分

第三章代数初步知识

一、用字母表示数

1用字母表示数的意义和作用

*用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。

2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式

(1)常见的数量关系

路程用s表示,速度v用表示,时间用t表示,三者之间的关系:

s=vt

v=s/t

t=s/v

总价用a表示,单价用b表示,数量用c表示,三者之间的关系:

a=bc

b=a/c

c=a/b

(2)运算定律和性质

加法交换律:

a+b=b+a

加法结合律:

(a+b)+c=a+(b+c)

乘法交换律:

ab=ba

乘法结合律:

(ab)c=a(bc)

乘法分配律:

(a+b)c=ac+bc

减法的性质:

a-(b+c)=a-b-c

(3)用字母表示几何形体的公式

长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。

c=2(a+b)

s=ab

正方形的边长a用表示,周长用c表示,面积用s表示。

c=4a

s=a²

平行四边形的底a用表示,高用h表示,面积用s表示。

s=ah

三角形的底用a表示,高用h表示,面积用s表示。

s=ah/2

梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。

s=(a+b)h/2

s=mh

圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。

c=∏d=2∏r

s=∏r²

扇形的半径用r表示,n表示圆心角的度数,面积用s表示。

s=∏nr²

/360

长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。

v=sh

s=2(ab+ah+bh)

v=abh

正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示.

s=6a²

v=a³

圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v表示.

s侧=ch

s表=s侧+2s底

圆锥的高用h表示,底面积用s表示,体积用v表示.

v=sh/3

3用字母表示数的写法

数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。

五比和比例

1比的意义和性质

(1)比的意义

两个数相除又叫做两个数的比。

“:

”是比号,读作“比”。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

(2)比的性质

比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

(3)求比值和化简比

求比值的方法:

用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。

(4)比例尺

图上距离:

实际距离=比例尺

要求会求比例尺;

已知图上距离和比例尺求实际距离;

已知实际距离和比例尺求图上距离。

线段比例尺:

在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

(5)按比例分配

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。

方法:

首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

2比例的意义和性质

(1)比例的意义

表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

(2)比例的性质

在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

(3)解比例

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

3正比例和反比例

(1)成正比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)

(2)成反比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x×

y=k(一定)

第四章几何的初步知识

一线和角

(1)线

*直线

直线没有端点;

长度无限;

过一点可以画无数条,过两点只能画一条直线。

*射线

射线只有一个端点;

长度无限。

*线段

线段有两个端点,它是直线的一部分;

长度有限;

两点的连线中,线段为最短。

*平行线

在同一平面内,不相交的两条直线叫做平行线。

两条平行线之间的垂线长度都相等。

*垂线

两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。

从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。

(2)角

(1)从一点引出两条射线,所组成的图形叫做角。

这个点叫做角的顶点,这两条射线叫做角的边。

(2)角的分类

锐角:

小于90°

的角叫做锐角。

直角:

等于90°

的角叫做直角。

钝角:

大于90°

而小于180°

的角叫做钝角。

平角:

角的两边成一条直线,这时所组成的角叫做平角。

平角180°

周角:

角的一边旋转一周,与另一边重合。

周角是360°

二平面图形

1长方形

(1)特征

对边相等,4个角都是直角的四边形。

有两条对称轴。

(2)计算公式

2正方形

(1)特征:

四条边都相等,四个角都是直角的四边形。

有4条对称轴。

3三角形

由三条线段围成的图形。

内角和是180度。

三角形具有稳定性。

三角形有三条高。

(3)分类

按角分

锐角三角形:

三个角都是锐角。

直角三角形:

有一个角是直角。

等腰三角形的两个锐角各为45度,它有一条对称轴。

钝角三角形:

有一个角是钝角。

按边分

不等边三角形:

三条边长度不相等。

等腰三角形:

有两条边长度相等;

两个底角相等;

有一条对称轴。

等边三角形:

三条边长度都相等;

三个内角都是60度;

有三条对称轴。

4平行四边形

(1)特征

两组对边分别平行的四边形。

相对的边平行且相等。

对角相等,相邻的两个角的度数之和为180度。

平行四边形容易变形。

(2)计算公式

5梯形

只有一组对边平行的四边形。

中位线等于上下底和的一半。

等腰梯形有一条对称轴。

(2)公式

s=(a+b)h/2=mh

6圆

(1)圆的认识

平面上的一种曲线图形。

圆中心的一点叫做圆心。

一般用字母o表示。

半径:

连接圆心和圆上任意一点的线段叫做半径。

一般用r表示。

在同一个圆里,有无数条半径,每条半径的长度都相等。

通过圆心并且两端都在圆上的线段叫做直径。

一般用d表示。

同一个圆里有无数条直径,所有的直径都相等。

同一个圆里,直径等于两个半径的长度,即d=2r。

圆的大小由半径决定。

圆有无数条对称轴。

(2)圆的周长

围成圆的曲线的长叫做圆的周长。

把圆的周长和直径的比值叫做圆周率。

用字母∏表示。

(3)圆的面积

圆所占平面的大小叫做圆的面积。

(4)计算公式

d=2r

r=d/2

c=πd

c=2πr

s=πr²

7扇形

(1)扇形的认识

一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

圆上AB两点之间的部分叫做弧,读作“弧AB”。

顶点在圆心的角叫做圆心角。

在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。

扇形有一条对称轴。

s=n∏r²

8环形

(1)特征

由两个半径不相等的同心圆相减而成,有无数条对称轴。

s=∏(R²

-r²

9轴对称图形

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

折痕所在的这条直线叫做对称轴。

正方形有4条对称轴,长方形有2条对称轴。

等腰三角形有2条对称轴,等边三角形有3条对称轴。

等腰梯形有一条对称轴,圆有无数条对称轴。

菱形有4条对称轴,扇形有一条对称轴。

三立体图形

(一)长方体

1特征

六个面都是长方形(有时有两个相对的面是正方形)。

相对的面面积相等,12条棱相对的4条棱长度相等。

有8个顶点。

相交于一个顶点的三条棱的长度分别叫做长、宽、高。

两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

把长方体放在桌面上,最多只能看到三个面。

长方体或者正方体6个面的总面积,叫做它的表面积。

2计算公式

V=sh

V=abh

(二)正方体

1特征

六个面都是正方形

六个面的面积相等

12条棱,棱长都相等

有8个顶点

正方体可以看作特殊的长方体

S表=6a²

(三)圆柱

1圆柱的认识

圆柱的上下两个面叫做底面。

圆柱有一个曲面叫做侧面。

圆柱两个底面之间的距离叫做高。

进一法:

实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。

这种取近似值的方法叫做进一法。

2计算公式

s表=s侧+s底×

(四)圆锥

1圆锥的认识

圆锥的底面是个圆,圆锥的侧面是个曲面。

从圆锥的顶点到底面圆心的距离是圆锥的高。

测量圆锥的高:

先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。

把圆锥的侧面展开得到一个扇形。

2计算公式

v=sh/3

(五)球

1认识

球的表面是一个曲面,这个曲面叫做球面。

球和圆类似,也有一个球心,用O表示。

从球心到球面上任意一点的线段叫做球的半径,用r表示,每条半径都相等。

通过球心并且两端都在球面上的线段,叫做球的直径,用d表示,每条直径都相等,直径的长度等于半径的2倍,即d=2r。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 英语考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1