1北师大版初三数学几何压轴题专项训练探究题Word格式.docx
《1北师大版初三数学几何压轴题专项训练探究题Word格式.docx》由会员分享,可在线阅读,更多相关《1北师大版初三数学几何压轴题专项训练探究题Word格式.docx(8页珍藏版)》请在冰豆网上搜索。
AC.
小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.
(1)特殊情况入手
添加条件:
“∠B=∠D”,如图2,可证AB+AD=
AC.(请你完成此证明)
(2)解决原来问题
受到
(1)的启发,在原问题中,添加辅助线:
如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)
2、如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
⑴求证:
CE=CF;
⑵在图1中,若G在AD上,且∠GCE=45°
,则GE=BE+GD成立吗?
为什么?
⑶运用⑴⑵解答中所积累的经验和知识,完成下题:
如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°
,AB=BC=12,E是AB上一点,且∠DCE=45°
,BE=4,求DE的长.
图2
图1
3、
(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
填空:
①∠AEB的度数为 ;
②线段AD,BE之间的数量关系为 .
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°
,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.
(3)解决问题
如图3,在正方形ABCD中,CD=
,若点P满足PD=1,且∠BPD=90°
,请直接写出点A到BP的距离.
4、
(1)如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:
AE=DH;
类比探究:
(2)如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,
DA上,若EF⊥HG于点O,探究线段EF与HG的数量关系,并说明理由;
综合运用:
(3)在
(2)问条件下,HF∥GE,如图3所示,已知BE=EC=2,EO=2FO,
求图中阴影部分的面积。
5、(2014•福建泉州,第25题12分)
如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.
(1)已知:
DE∥AC,DF∥BC.
①判断
四边形DECF一定是什么形状?
②裁剪
当AC=24cm,BC=20cm,∠ACB=45°
时,请你探索:
如何剪四边形DECF,能使它的面积最大,并证明你的结论;
(2)折叠
请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.
6、如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90º
.
当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置
关系为,数量关系为.
当点D在线段BC的延长线上时,如图丙,
中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90º
,点D在线段BC上运动.
探究:
当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?
并说明理由.
(3)若AC=
,BC=3,在
(2)的条件下,设正方形ADEF的边DE与线段CF
相交于点P,请直接写出线段CP长的最大值.
7、如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:
(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;
②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度
,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka,CG=kb(a
b,k
0),第
(1)题①中得到的结论哪些成立,哪些不成立?
若成立,以图5为例简要说明理由.
(3)在第
(2)题图5中,连结
、
,且a=3,b=2,k=
,求
的值.
8、【情境观察】
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
图1图2
观察图2可知:
与BC相等的线段是,∠CAC′=°
【问题探究】
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.
【拓展延伸】
如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.
图3
【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:
如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:
PD+PE=CF.
小军的证明思路是:
如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:
小俊的证明思路是:
如图2,过点P作PG⊥CF,垂足为G,可以证得:
PD=GF,PE=CG,则PD+PE=CF.
【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:
PD﹣PE=CF;
请运用上述解答中所积累的经验和方法完成下列两题:
【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
【迁移拓展】图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2
dm,AD=3dm,BD=
dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.