晶闸管文档格式.docx

上传人:b****7 文档编号:22359807 上传时间:2023-02-03 格式:DOCX 页数:36 大小:346.89KB
下载 相关 举报
晶闸管文档格式.docx_第1页
第1页 / 共36页
晶闸管文档格式.docx_第2页
第2页 / 共36页
晶闸管文档格式.docx_第3页
第3页 / 共36页
晶闸管文档格式.docx_第4页
第4页 / 共36页
晶闸管文档格式.docx_第5页
第5页 / 共36页
点击查看更多>>
下载资源
资源描述

晶闸管文档格式.docx

《晶闸管文档格式.docx》由会员分享,可在线阅读,更多相关《晶闸管文档格式.docx(36页珍藏版)》请在冰豆网上搜索。

晶闸管文档格式.docx

若用于锯齿波生发器、长时间延时器、过电压保护器及大功率晶体管触发电路等,可选用BTG晶闸管。

若用于电磁灶、电子镇流器、超声波电路、超导磁能储存系统及开关电源等电路,可选用逆导晶闸管。

若用于光电耦合器、光探测器、光报警器、光计数器、光电逻辑电路及自动生产线的运行监控电路,可选用光控晶闸管。

2.选择晶闸管的主要参数 

晶闸管的主要参数应根据应用电路的具体要求而定。

所选晶闸管应留有一定的功率裕量,其额定峰值电压和额定电流(通态平均电流)均应高于受控电路的最大工作电压和最大工作电流1.5~2倍。

晶闸管的正向压降、门极触发电流及触发电压等参数应符合应用电路(指门极的控制电路)的各顶要求,不能偏高或偏低,否则会影响晶闸管的正常工作。

晶闸管的主要电参数

晶闸管的主要电参数有正向转折电压VBO、正向平均漏电流IFL、反向漏电流IRL、断态重复峰值电压VDRM、反向重复峰值电压VRRM、正向平均压降VF、通态平均电流IT、门极触发电压VG、门极触发电流IG、门极反向电压和维持电流IH等。

可参见图5标识。

(一)晶闸管正向转折电压VBO

晶闸管的正向转折电压VBO是指在额定结温为100℃且门极(G)开路的条件下,在其阳极(A)与阴极(K)之间加正弦半波正向电压、使其由关断状态转变为导通状态时所对应的峰值电压。

(二)晶闸管断态重复峰值电压VDRM

断态重复峰值电压VDRM,是指晶闸管在正向阻断时,允许加在A、K(或T1、T2)极间最大的峰值电压。

此电压约为正向转折电压减去100V后的电压值。

(三)晶闸管通态平均电流IT

通态平均电流IT,是指在规定环境温度和标准散热条件下,晶闸管正常工作时A、K(或T1、T2)极间所允许通过电流的平均值。

(四)反向击穿电压VBR

反向击穿电压是指在额定结温下,晶闸管阳极与阴极之间施加正弦半波反向电压,当其反向漏电电流急剧增加时反对应的峰值电压。

(五)晶闸管反向重复峰值电压VRRM

反向重复峰值电压VRRM,是指晶闸管在门极G断路时,允许加在A、K极间的最大反向峰值电压。

此电压约为反向击穿电压减去100V后的峰值电压。

(六)晶闸管正向平均电压降VF

正向平均电压降VF也称通态平均电压或通态压降VT,是指在规定环境温度和标准散热条件下,当通过晶闸管的电流为额定电流时,其阳极A与阴极K之间电压降的平均值,通常为0.4~1.2V。

(七)晶闸管门极触发电压VGT

门极触发VGT,是指在规定的环境温度和晶闸管阳极与阴极之间为一定值正向电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电压,一般为1.5V左右。

(八)晶闸管门极触发电流IGT

门极触发电流IGT,是指在规定环境温度和晶闸管阳极与阴极之间为一定值电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电流。

(九)晶闸管门极反向电压

门极反向电压是指晶闸管门极上所加的额定电压,一般不超过10V。

(十)晶闸管维持电流IH

维持电流IH是指维持晶闸管导通的最小电流。

当正向电流小于IH时,导通的晶闸管会自动关断。

(十一)晶闸管断态重复峰值电流IDR

断态重复峰值电流IDR,是指晶闸管在断态下的正向最大平均漏电电流值,一般小于100μA

(十二)晶闸管反向重复峰值电流IRRM

反向重复峰值电流IRRM,是指晶闸管在关断状态下的反向最大漏电电流值,一般小于100μA。

晶闸管的选用与代换及检测详细培训教材

晶闸管的选用与代换及检测详细培训教材

1.晶闸管的选用 

(1)选择晶闸管的类型:

晶闸管有多种类型,应根据应用电路的具体要求合理选用。

若用于交直流电压控制、可控整流、交流调压、逆变电源、开关电源保护电路等,可选用普通晶闸管。

若用于交流开关、交流调压、交流电动机线性调速、灯具线性调光及固态继电器、固态接触器等电路中,应选用双向晶闸管。

若用于交流电动机变频调速、斩波器、逆变电源及各种电子开关电路等,可选用门极关断晶闸管。

若用于锯齿波发生器、长时间延时器、过电压保护器及大功率晶体管触发电路等,可选用BTG晶闸管。

若用于电磁灶、电子镇流器、超声波电路、超导磁能储存系统及开关电源等电路,可选用逆导晶闸管。

若用于光电耦合器、光探测器、光报警器、光计数器、光电逻辑电路及自动生产线的运行监控电路,可选用光控晶闸管。

2.选择晶闸管的主要参数:

晶闸管的主要参数应根据应用电路的具体要求而定。

所选晶闸管应留有一定的功率裕量,其额定峰值电压和额定电流(通态平均电流)均应高于受控电路的最大工作电压和最大工作电流1.5~2倍。

晶闸管的正向压降、门极触发电流及触发电压等参数应符合应用电路(指门极的控制电路)的各项要求,不能偏高或偏低,否则会影响晶闸管的正常工作。

2.晶闸管的代换

晶闸管损坏后,若无同型号的晶闸管更换,可以选用与其性能参数相近的其他型号晶闸管来代换。

应用电路在设计时,一般均留有较大的裕量。

在更换晶闸管时,只要注意其额定峰值电压(重复峰值电压)、额定电流(通态平均电流)、门极触发电压和门极触发电流即可,尤其是额定峰值电压与额定电流这两个指标。

代换晶闸管应与损坏晶闸管的开关速度…致。

例如:

在脉冲电路、高速逆变电路中使用的高速晶闸管损坏后,只能选用同类型的快速晶闸管,而不能用普通晶闸管来代换。

选取代用晶闸管时,不管什么参数,都不必留有过大的裕量,应尽可能与被代换晶闸管的参数相近,因为过大的裕量不仅是一种浪费,而且有时还会起副作用,出现不触发或触发不灵敏等现象。

另外,还要注意两个晶闸管的外形要相同,否则会给安装工作带来不利。

1.单向晶闸管的检测

(1)判别各电极:

根据普通晶闸管的结构可知,其门极G与阴极K极之间为一个PN结,具有单向导电特性,而阳极A与门极之间有两个反极性串联的PN结。

因此,通过用万用表的R×

100或R×

1kQ档测量普通晶闸管各引脚之间的电阻值,即能确定三个电极。

具体方法是:

将万用表黑表笔任接晶闸管某一极,红表笔依次去触碰另外两个电极。

若测量结果有一次阻值为几千欧姆(kΩ),而另一次阻值为几百欧姆(Ω),则可判定黑表笔接的是门极G。

在阻值为几百欧姆的测量中,红表笔接的是阴极K,而在阻值为几千欧姆的那次测量中,红表笔接的是阳极A,若两次测出的阻值均很大,则说明黑表笔接的不是门极G,应用同样方法改测其他电极,直到找出三个电极为止。

也可以测任两脚之间的正、反向电阻,若正、反向电阻均接近无穷大,则两极即为阳极A和阴极K,而另一脚即为门极G。

普通晶闸管也可以根据其封装形式来判断出各电极。

螺栓形普通晶闸管的螺栓一端为阳极A,较细的引线端为门极G,较粗的引线端为阴极K。

平板形普通晶闸管的引出线端为门极G,平面端为阳极A,另一端为阴极K。

金属壳封装(T0—3)的普通晶闸管,其外壳为阳极A。

塑封(T0—220)的普通晶闸管的中间引脚为阳极A,且多与自带散热片相连。

图1为几种普通晶闸管的引脚排列。

(2)判断其好坏:

用万用表R×

kΩ档测量普通晶闸管阳极A与阴极K之间的正、反向电阻,正常时均应为无穷大(∞);

若测得A、K之间的正、反向电阻值为零或阻值均较小,则说明晶闸管内部击穿短路或漏电。

测量门极G与阴极K之间的正、反向电阻值,正常时应有类似二极管的正、反向电阻值(实际测量结果要较普通二极管的正、反向电阻值小一些),即正向电阻值较小(小于2 

kΩ),反向电阻值较大(大于80 

kΩ)。

若两次测量的电阻值均很大或均很小,则说明该晶闸管G、K极之间开路或短路。

若正、反电阻值均相等或接近,则说明该晶闸管已失效,其G、K极问PN结已失去单向导电作用。

测量阳极A与门极G之间的正、反向电阻,正常时两个阻值均应为几百千欧姆(kΩ)或无穷大,若出现正、反向电阻值不一样(有类似二极管的单向导电)。

则是G、A极之间反向串联的两个PN结中的一个已击穿短路。

(3)触发能力检测:

对于小功率(工作电流为5 

A以下)的普通晶闸管,可用万用表R×

1档测量。

测量时黑表笔接阳极A,红表笔接阴极K,此时表针不动,显示阻值为无穷大(∞)。

用镊子或导线将晶闸管的阳极A与门极短路(见图2),相当于给G极加上正向触发电压,此时若电阻值为几欧姆至几十欧姆(具体阻值根据晶闸管的型号不同会有所差异),则表明晶闸管因正向触发而导通。

再断开A极与G极的连接(A、K极上的表笔不动,只将G极的触发电压断掉)。

若表针示值仍保持在几欧姆至几十欧姆的位置不动,则说明此晶闸管的触发性能良好。

对于工作电流在5 

A以上的中、大功率普通晶闸管,因其通态压降VT维持电流IH及门极触发电压Vo均相对较大,万用表R×

kΩ档所提供的电流偏低,晶闸管不能完全导通,故检测时可在黑表笔端串接一只200 

Ω可调电阻和1~3节1.5 

V干电池(视被测晶闸管的容量而定,其工作电流大于100 

A的,应用3节1.5 

V干电池),如图3所示。

也可以用图4中的测试电路测试普通晶闸管的触发能力。

电路中,vT为被测晶闸管,HL为6.3 

V指示灯(手电筒中的小电珠),GB为6 

V电源(可使用4节1.5 

V干电池或6 

V稳压电源),S为按钮,R为限流电阻。

当按钮S未接通时,晶闸管VT处于阻断状态,指示灯HL不亮(若此时HL

亮,则是vT击穿或漏电损坏)。

按动一下按钮S后(使S接通一下,为晶闸管VT的门极G提供触发电压),若指示灯HL一直点亮,则说明 

晶闸管的触发能力良好。

若指示灯亮度偏低,则表明晶闸管性能不良、导通压降大(正常时导通压降应为1 

v左右)。

若按钮S接通时,指示灯亮,而按钮S断开时,指示灯熄灭,则说明晶闸管已损坏,触发性能不良。

(1)判别各电极:

1或R×

10档分别测量双向晶闸管三个引脚间的正、反向电阻值,若测得某一管脚与其他两脚均不通,则此脚便是主电极T2。

找出T2极之后,剩下的两脚便是主电极Tl和门极G3。

测量这两脚之间的正、反向电阻值,会测得两个均较小的电阻值。

在电阻值较小(约几十欧姆)的一次测量中,黑表笔接的是主电极T1,红表笔接的是门极G。

螺栓形双向晶闸管的螺栓一端为主电极T2,较细的引线端为门极G,较粗的引线端为主电极T1。

金属封装(To—3)双向晶闸管的外壳为主电极T2。

塑封(TO—220)双向晶闸管的中间引脚为主电极T2,该极通常与自带小散热片相连。

图5是几种双向晶闸管的引脚排列。

(2)判别其好坏:

10档测量双向晶闸管的主电极T1与主电极T2之间、主电极T2与门极G之间的正、反向电阻值,正常时均应接近无穷大。

若测得电阻值均很小,则说明该晶闸管电极问已击穿或漏电短路。

测量主电极T1与门极G之问的正、反向电阻值,正常时均应在几十欧姆(Ω)至一百欧姆(Ω)之间(黑表笔接T1极,红表笔接G极时,测得的正向电阻值较反向电阻值略小一些)。

若测得T1极与G极之间的正、反向电阻值均为无穷大,则说明该晶闸管已开路损坏。

3)触发能力检测:

对于工作电流为8 

A以下的小功率双向晶闸管,可用万用表R×

1档直接测量。

测量时先将黑表笔接主电极T2,红表笔接主电极T1,然后用镊子将T2极与门极G短路,给G极加上正极性触发信号,若此时测得的电阻值由无穷大变为十几欧姆(Ω),则说明该晶闸管已被触发导通,导通方向为T2→T1。

再将黑表笔接主电极T1,红表笔接主电极T2,用镊子将T2极与门极G之间短路,给G极加上负极性触发信号时,测得的电阻值应由无穷大变为十几欧姆,则说明该晶闸管已被触发导通,导通方向为T1→T2。

若在晶闸管被触发导通后断开G极,T2、T1极间不能维持低阻导通状态而阻值变为无穷大,则说明该双向晶闸管性能不良或已经损坏。

若给G极加上正(或负)极性触发信号后,晶闸管仍不导通(T1与T2间的正、反向电阻值仍为无穷大),则说明该晶闸管已损坏,无触发导通能力。

对于工作电流在8 

A以上的中、大功率双向晶闸管,在测量其触发能力时,可先在万用表的某支表笔上串接1~3节1.5 

V干电池,然后再用R×

1档按上述方法测量。

对于耐压为400 

V以上的双向晶闸管,也可以用220 

V交流电压来测试其触发能力及性能好坏。

图6是双向晶闸管的测试电路。

电路中,FL为60 

W/220 

V白炽灯泡,VT为被测双向晶闸管,R为100Ω限流电阻,S为按钮。

将电源插头接入市电后,双向晶闸管处于截止状态,灯泡不亮(若此时灯泡正常发光,则说明被测晶闸管的T1、T2极之间已击穿短 

路;

若灯泡微亮,则说明被测晶闸管漏电损坏)。

按动一下按钮S,为晶闸管的门极G提供触发电压信号,正常时晶闸管应立即被触发导通,灯泡正常发光。

若灯泡不能发光,则说明被测晶闸管内部开路损坏。

若按动按钮s时灯泡点亮,松手后灯泡又熄灭,则表明被测晶闸管的触发性能不良。

用万用表检测小功率光控晶闸管时,可将万用表置于R×

1档,在黑表笔上串接1~3节1.5 

V干电池,测量两引脚之间的正、反向电阻值,正常时均应为无穷大。

然后再用小手电筒或激光笔照射光控晶闸管的受光窗口,此时应能测出一个较小的正向电阻值,但反向电阻值仍为无穷大。

在较小电阻值的一次测量中,黑表笔接的是阳极A,红表笔接的是阴极K。

也可用图lO中电路对光控晶闸管进行测量。

接通电源开关S,用手电筒照射晶闸管VT的受光窗口。

为其加上触发光源(大功率光控晶闸管自带光源,只要将其光缆中的发光二极管或半导体激光器加上工作电压即可,不用外加光源)后,指示灯EL应点亮,撤离光源后指示灯EL应维持发光。

只有一个PN结。

因此,只要用万用表测出A极和G极即可。

将万用表置于R×

kΩ档,两表笔任接被测晶闸管的某两个引脚(测其正、反向电阻值),若测出某对引脚为低阻值时,则黑表笔接的阳极A,而红表笔接的是门极G,另外一个引脚即是阴极K。

kΩ档测量BTG晶闸管各电极之间的正、反向电阻值。

正常时,阳极A与阴极K之间的正、反向电阻均为无穷大;

阳极A与门极G之间的正向电阻值(指黑表笔接A极时)为几百欧姆至几千欧姆,反向电阻值为无穷大。

若测得某两极之间的正、反向电阻值均很小,则说明该晶闸管已短路损坏。

Ω档,黑表笔接阳极A,红表笔接阴极K,测得阻值应为无穷大。

然后用手指触摸门极G,给其加一个人体感应信号,若此时A、K极之间的电阻值由无穷大变为低阻值(数欧姆),则说明晶闸管的触发能力良好。

否则说明此晶闸管的性能不良。

晶闸管的主要参数

晶闸管的主要参数:

  为了正确选用晶闸管元件,必须要了解它的主要参数,一般在产品的目录上都给出了参数的平均值或极

限值,产品合格证上标有元件的实测数据。

(1)断态重复峰值电压UDRM

  在控制极断路和晶闸管正向阻断的条件下,可以重复加在晶闸管两端的正向峰值电压,其数值比正向转

折电压小100V。

(2)反向重复峰值电压URRM

  在控制极断路时,可以重复加在晶闸管元件上的反向峰值电压,此电压数值规定比反向击穿电压小

100V。

  通常把UDRM与UDRM中较小的一个数值标作器件型号上的额定电压。

由于瞬时过电压也会使晶闸管遭到破

坏,因而在选用的时候,额定电压一个应该为正常工作峰值电压的2~3辈,作为安全系数。

(3)额定通态平均电流(额定正向平均电流)IT

  在环境温度不大于40oC和标准散热即全导通的条件下,晶闸管元件可以连续通过的工频正弦半波电流(在

一个周期内)的平均值,称为额定通态平均电流IT,简称额定电流。

额定通态平均电流(额定正向平均电流)IT

  ——在环境温度不大于40oC和标准散热即全导通的条件下,晶闸管元件可以连续通过的工频正弦半波电流(在一个周期内)的平均值,称为额定通态平均电流IT,简称额定电流。

  其中,Ie为有效值

(4)维持电流IH

  在规定的环境温度和控制极断路的条件下,维持元件继续导通的最小电流称为维持电流IH。

一般为几十

毫安~一百多毫安,其数值与元件的温度成反比,在120摄氏度时维持电流约为25摄氏度时的一般。

当晶闸管

的正向电流小于这个电流时,晶闸管将自动关断。

晶闸管综合知识

晶闸管综合知识  

晶闸管(Thyristor)是晶体闸流管的简称,又可称做可控硅整流器,以前被简称为可控硅;

1957年美国通用电器公司开发出世界上第一晶闸管产品,并于1958年使其商业化;

晶闸管是PNPN四层半导体结构,它有三个极:

阳极,阴极和门极;

晶闸管工作条件为:

加正向电压且门极有触发电流;

其派生器件有:

快速晶闸管,双向晶闸管,逆导晶闸管,光控晶闸管等。

它是一种大功率开关型半导体器件,在电路中用文字符号为“V”、“VT”表示(旧标准中用字母“SCR”表示)。

  晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。

  晶闸管的种类

  晶闸管有多种分类方法。

  

(一)按关断、导通及控制方式分类

  晶闸管按其关断、导通及控制方式可分为普通晶闸管、双向晶闸管、逆导晶闸管、门极关断晶闸管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管等多种。

  

(二)按引脚和极性分类

  晶闸管按其引脚和极性可分为二极晶闸管、三极晶闸管和四极晶闸管。

  (三)按封装形式分类

  晶闸管按其封装形式可分为金属封装晶闸管、塑封晶闸管和陶瓷封装晶闸管三种类型。

  (四)按电流容量分类

  晶闸管按电流容量可分为大功率晶闸管、中功率晶闸管和小功率晶闸管三种。

  (五)按关断速度分类

  晶闸管按其关断速度可分为普通晶闸管和高频(快速)晶闸管。

  晶闸管的工作原理

  晶闸管T在工作过程中,它的阳极A和阴极K与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。

  晶闸管的工作条件:

  1.晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于关断状态。

  2.晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。

  3.晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。

  4.晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。

  从晶闸管的内部分析工作过程:

  晶闸管是四层三端器件,它有J1、J2、J3三个PN结图1,可以把它中间的NP分成两部分,构成一个PNP型三极管和一个NPN型三极管的复合管图2

  当晶闸管承受正向阳极电压时,为使晶闸管导通,必须使承受反向电压的PN结J2失去阻挡作用。

图2中每个晶体管的集电极电流同时就是另一个晶体管的基极电流。

因此,两个互相复合的晶体管电路,当有足够的门机电流Ig流入时,就会形成强烈的正反馈,造成两晶体管饱和导通,晶体管饱和导通。

  设PNP管和NPN管的集电极电流相应为Ic1和Ic2;

发射极电流相应为Ia和Ik;

电流放大系数相应为a1=Ic1/Ia和a2=Ic2/Ik,设流过J2结的反相漏电电流为Ic0,

  晶闸管的阳极电流等于两管的集电极电流和漏电流的总和:

  Ia=Ic1+Ic2+Ic0或Ia=a1Ia+a2Ik+Ic0

  若门极电流为Ig,则晶闸管阴极电流为Ik=Ia+Ig

  从而可以得出晶闸管阳极电流为:

I=(Ic0+Iga2)/(1-(a1+a2))(1—1)式

  硅PNP管和硅NPN管相应的电流放大系数a1和a2随其发射极电流的改变而急剧变化如图3所示。

  当晶闸管承受正向阳极电压,而门极未受电压的情况下,式(1—1)中,Ig=0,(a1+a2)很小,故晶闸管的阳极电流Ia≈Ic0晶闸关处于正向阻断状态。

当晶闸管在正向阳极电压下,从门极G流入电流Ig,由于足够大的Ig流经NPN管的发射结,从而提高起点流放大系数a2,产生足够大的极电极电流Ic2流过PNP管的发射结,并提高了PNP管的电流放大系数a1,产生更大的极电极电流Ic1流经NPN管的发射结。

这样强烈的正反馈过程迅速进行。

从图3,当a1和a2随发射极电流增加而(a1+a2)≈1时,式(1—1)中的分母1-(a1+a2)≈0,因此提高了晶闸管的阳极电流Ia.这时,流过晶闸管的电流完全由主回路的电压和回路电阻决定。

晶闸管已处于正向导通状态。

  式(1—1)中,在晶闸管导通后,1-(a1+a2)≈0,即使此时门极电流Ig=0,晶闸管仍能保持原来的阳极电流Ia而继续导通。

晶闸管在导通后,门极已失去作用。

  在晶闸管导通后,如果不断的减小电源电压或增大回路电阻,使阳极电流Ia减小到维持电流IH以下时

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 机械仪表

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1