公务员必备公式Word下载.docx

上传人:b****7 文档编号:22093188 上传时间:2023-02-02 格式:DOCX 页数:8 大小:19.40KB
下载 相关 举报
公务员必备公式Word下载.docx_第1页
第1页 / 共8页
公务员必备公式Word下载.docx_第2页
第2页 / 共8页
公务员必备公式Word下载.docx_第3页
第3页 / 共8页
公务员必备公式Word下载.docx_第4页
第4页 / 共8页
公务员必备公式Word下载.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

公务员必备公式Word下载.docx

《公务员必备公式Word下载.docx》由会员分享,可在线阅读,更多相关《公务员必备公式Word下载.docx(8页珍藏版)》请在冰豆网上搜索。

公务员必备公式Word下载.docx

相遇时间

相遇时间=相遇路程÷

速度和

速度和=相遇路程÷

追及问题

追及距离=速度差×

追及时间

追及时间=追及距离÷

速度差

速度差=追及距离÷

流水问题

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷

2

水流速度=(顺流速度-逆流速度)÷

浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷

溶液的重量×

100%=浓度

浓度=溶质的重量

浓度=溶液的重量

利润与折扣问题

利润=售出价-成本

利润率=利润÷

成本×

100%=(售出价÷

成本-1)×

100%

涨跌金额=本金×

涨跌百分比

折扣=实际售价÷

原售价×

100%(折扣<1)

利息=本金×

利率×

时间

税后利息=本金×

时间×

(1-20%)

1.基本计算方法

(1)尾数估算法

(2)尾数确定法

(3)凑整法是简便运算中最常用的方法,即根据交换律、结合律把可以凑成10、20、30、50、100。

的数放在一起运算,从而提高运算速度。

基本的凑整算式:

25*8=200等。

(4)补数法a、直接利用补数法巧算

b、间接利用补数法巧算又称凑整去补法

(5)基准数法当遇到两个以上的数相加且这些数相互接近时,取一个数做基准数,然后再加上每个加数与基准数的差,从而求和。

(6)数学公式求解法

如:

完全平方差、完全平方和公式的运用考查。

(7)科学计数法的巧用

2.工程问题的数量关系

工作量=工作效率x工作时间

工作效率=工作量/工作时间

总工作量=各分工作量之和

此类题:

一般设总的工作量为1;

3.行程问题

(1)相遇问题

甲从a地到b地,乙从b地到a地,然后两人在途中相遇,实质上是甲乙一起走了ab之间这段路程,如果两人同时出发,那么:

ab之间的路程=甲走的路程+乙走的路程=甲的速度*相遇时间+乙的速度*相遇时间=甲乙速度和*相遇时间

相遇问题的核心是速度和时间的问题

(2)追及问题

追及路程=甲走的路程—乙走的路程=甲乙速度差*追及时间

追及问题的核心是速度差问题

(3)流水问题

顺水速度=船速+水速逆水速度=船速—水速

因此船速=(顺水速度+逆水速度)/2

水速=(顺水速度—逆水速度)/2

4.植树问题

(1)不封闭路线

(a)两端植树,则颗树比段数多1;

颗树=全长/段数+1

(b)一端植树,则颗数与段数相等;

颗数=全长/段数

(c)两端不植树,则颗数比段数少1。

颗数=全长/段数-1

(2)封闭路线

植树的颗数=全长/段数

6,跳井问题或称爬绳问题

完成任务的次数=井深或绳长-每次所爬米数+1

7,年龄问题

方法1:

几年后的年龄=大小年龄差/倍数差-小年龄

几年前的年龄=小年龄-大小年龄差/倍数差

方法2:

一元一次方程解法

方法3:

结果代入法,此乃最优方法

甲对乙说:

当我的岁数是你现在岁数时,你才4岁。

乙对甲说:

当我的岁数到你现在岁数时,你将有67岁。

甲乙现在各有()。

A.45岁,26岁B.46岁,25岁

C.47岁,24岁D.48岁,23岁

甲-4=甲-乙,67-甲=甲-乙

8,鸡兔同笼问题

1,《孙子算经》解法:

设头数为a,足数是b。

则b/2-a是兔数,a-(b/2-a)是鸡数。

2,《丁巨算法》解法:

鸡数=(4*头总数-总足数)/2兔数=总数-鸡数

兔数=(总足数-2*头总数)/2

鸡数=总数-兔数

著名古典小说《镜花缘》中的米兰芬算灯用的也是鸡兔同笼问题的解法。

9,溶液问题

溶液=溶质+溶剂

浓度=溶质/溶液=溶质的质量分数

此类题涉及的考查类型:

(1)稀释后,求溶质的质量分数;

(2)饱和溶液的计算问题;

注意:

一种溶剂可以同时和几种溶质互溶。

根据多年的实践,总结规律繁化简;

概括知识难变易,高中数学巧记忆。

言简意赅易上口,结合课本胜一筹。

始生之物形必丑,抛砖引得白玉出。

一、《集合与函数》

内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;

其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;

图象互为轴对称,Y=X是对称轴;

求解非常有规律,反解换元定义域;

反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;

函数性质看指数,奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数;

图象第一象限内,函数增减看正负。

二、《三角函数》

三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;

向下三角平方和,倒数关系是对角,

顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,

变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

三、《不等式》

解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。

非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。

图形函数来帮助,画图建模构造法。

四、《数列》

等差等比两数列,通项公式N项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换,

取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考:

一算二看三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化:

首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

五、《复数》

虚数单位i一出,数集扩大到复数。

一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。

箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。

代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。

i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。

虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。

几何运算图上看,加法平行四边形,

减法三角法则判;

乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。

利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。

四条性质离不得,相等和模与共轭,

两个不会为实数,比较大小要不得。

复数实数很密切,须注意本质区别。

六、《排列、组合、二项式定理》

加法乘法两原理,贯穿始终的法则。

与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。

归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。

特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。

排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。

两条性质两公式,函数赋值变换式。

七、《立体几何》

点线面三位一体,柱锥台球为代表。

距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。

线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。

计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。

射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。

公理性质三垂线,解决问题一大片。

八、《平面解析几何》

有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;

都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;

平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。

图形直观数入微,数学本是数形学。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1