1、相遇时间相遇时间相遇路程速度和速度和相遇路程追及问题追及距离速度差追及时间追及时间追及距离速度差速度差追及距离流水问题顺流速度静水速度水流速度逆流速度静水速度水流速度静水速度(顺流速度逆流速度)2水流速度(顺流速度逆流速度)浓度问题溶质的重量溶剂的重量溶液的重量溶质的重量溶液的重量100%浓度浓度溶质的重量浓度溶液的重量利润与折扣问题利润售出价成本利润率利润成本100%(售出价成本1)100%涨跌金额本金涨跌百分比折扣实际售价原售价100%(折扣1)利息本金利率时间税后利息本金时间(120%).基本计算方法()尾数估算法()尾数确定法()凑整法是简便运算中最常用的方法,即根据交换律、结合律把可
2、以凑成10、20、30、50、100。的数放在一起运算,从而提高运算速度。基本的凑整算式:25*8=200等。()补数法 a、直接利用补数法巧算b、间接利用补数法巧算又称凑整去补法()基准数法当遇到两个以上的数相加且这些数相互接近时,取一个数做基准数,然后再加上每个加数与基准数的差,从而求和。(6)数学公式求解法如:完全平方差、完全平方和公式的运用考查。(7)科学计数法的巧用.工程问题的数量关系工作量工作效率x工作时间工作效率工作量 /工作时间总工作量各分工作量之和此类题:一般设总的工作量为1;3.行程问题(1)相遇问题甲从a地到b地,乙从b地到a地,然后两人在途中相遇,实质上是甲乙一起走了a
3、b之间这段路程,如果两人同时出发,那么:ab之间的路程=甲走的路程+乙走的路程=甲的速度*相遇时间+乙的速度*相遇时间=甲乙速度和*相遇时间相遇问题的核心是速度和时间的问题(2)追及问题追及路程=甲走的路程乙走的路程=甲乙速度差*追及时间追及问题的核心是速度差问题(3)流水问题顺水速度=船速+水速 逆水速度=船速水速因此 船速=(顺水速度+逆水速度)/2水速= (顺水速度逆水速度)/24.植树问题(1)不封闭路线(a)两端植树,则颗树比段数多1;颗树=全长/段数+1(b)一端植树,则颗数与段数相等;颗数=全长/段数(c)两端不植树,则颗数比段数少1。颗数=全长/段数-1(2)封闭路线植树的颗数
4、=全长/段数6,跳井问题或称爬绳问题完成任务的次数=井深或绳长-每次所爬米数+17,年龄问题方法1:几年后的年龄=大小年龄差/倍数差-小年龄几年前的年龄=小年龄-大小年龄差/倍数差方法2:一元一次方程解法方法3:结果代入法,此乃最优方法甲对乙说:当我的岁数是你现在岁数时,你才4岁。乙对甲说:当我的岁数到你现在岁数时,你将有67岁。甲乙现在各有()。A45岁,26岁 B46岁,25岁C47岁,24岁 D48岁,23岁甲-4=甲-乙,67-甲=甲-乙8,鸡兔同笼问题1,孙子算经解法:设头数为a,足数是b。则b/2-a是兔数,a-(b/2-a)是鸡数。2,丁巨算法解法:鸡数=(4*头总数-总足数)/
5、2 兔数=总数-鸡数兔数=(总足数-2*头总数)/2鸡数=总数-兔数著名古典小说镜花缘中的米兰芬算灯用的也是鸡兔同笼问题的解法。9,溶液问题溶液=溶质+溶剂浓度=溶质/溶液=溶质的质量分数此类题涉及的考查类型:(1)稀释后,求溶质的质量分数;(2)饱和溶液的计算问题;注意:一种溶剂可以同时和几种溶质互溶。根据多年的实践,总结规律繁化简;概括知识难变易,高中数学巧记忆。言简意赅易上口,结合课本胜一筹。始生之物形必丑,抛砖引得白玉出。一、集合与函数内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。指数与对数函数,两者互为
6、反函数。底数非的正数,两边增减变故。函数定义域好求。分母不能等于,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。两个互为反函数,单调性质都相同;图象互为轴对称,是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。二、三角函数三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字,连结顶点三角形;向下三角平方和,倒
7、数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;加余弦想余弦,减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形
8、,形象直观好换名,简单三角的方程,化为最简求解集;三、不等式解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。证不等式的方法,实数性质威力大。求差与比大小,作商和争高下。直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。四、数列等差等比两数列,通项公式项和。两个有限求极限,四则运算顺序换。数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不
9、可少。还有数学归纳法,证明步骤程序化:首先验证再假定,从向着K加,推论过程须详尽,归纳原理来肯定。五、复数虚数单位一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。对应复平面上点,原点与它连成箭。箭杆与轴正向,所成便是辐角度。箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。代数运算的实质,有多项式运算。的正整数次慕,四个数值周期现。一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开
10、方极方便。辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。六、排列、组合、二项式定理加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。七、立体几何点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。垂直平行是重点,证明须弄清概念。线线线面
11、和面面、三对之间循环现。方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。八、平面解析几何有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。笛卡尔的观点对,点和有序实数对,两者一来对应,开创几何新途径。两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1