直流电子负载文档格式.docx

上传人:b****7 文档编号:22080260 上传时间:2023-02-02 格式:DOCX 页数:16 大小:589.41KB
下载 相关 举报
直流电子负载文档格式.docx_第1页
第1页 / 共16页
直流电子负载文档格式.docx_第2页
第2页 / 共16页
直流电子负载文档格式.docx_第3页
第3页 / 共16页
直流电子负载文档格式.docx_第4页
第4页 / 共16页
直流电子负载文档格式.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

直流电子负载文档格式.docx

《直流电子负载文档格式.docx》由会员分享,可在线阅读,更多相关《直流电子负载文档格式.docx(16页珍藏版)》请在冰豆网上搜索。

直流电子负载文档格式.docx

需要设计一个直流负载,可以实现恒压和恒流两种模式,并可以切换,且电压值和电流值都可以设定在一定范围内。

本实验采用的是手动切换两种模式的方式。

恒压、恒流两种模式都是采用运算放大器和反馈网络所组成的电路而实现的,其中,电路中的反馈网络是以场效应管为核心而构成的可调式放大电路,并增加了软启动电路和电压补偿电路进行补充。

可调式放大电路就是指放大电路根据输出要求的需要改变经过反馈电路的反馈信号,以达到输出需求。

软启动电路可以使电压由零慢慢提升到额定电压,这样电路在启动过程中的启动电流,就由过去过载冲击电流不可控制变成为可控制。

电压补偿电路即功率因数的补偿,电流在经过负载会消耗部分能量,以致最终得到的结果和预期值有较大差距,电压补偿电路则可以弥补损失。

第三章恒流模式

3.1恒流模式基本原理

在定电流工作模式时,电子负载所流入的负载电流依据所设定的电流值而保持恒定,与输入电压大小无关,即负载电流保持不变。

恒流模式下的电路原理图,如图3.1所示。

该恒流电路是以集成运算放大器OP07为核心,OP07芯片是一种低噪声,非暂波稳零的双极性运算放大器集成电路。

由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。

OP07同时具有输入偏置电流低(OP07A为±

2nA)和开环增益高(对于OP07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面这样的电路更容易获得稳定及精确的电流值。

如图3.1所示,R2为取样电阻,当从OP07的3端给定一个信号VREF时,如果R2上的电压小于VREF,也就是OP07的-IN小于+IN,OP07加输出大,使MOS加大导通使R2的电流加大。

如果R2上的电压大于VREF时,-IN大于+IN,OP07减小输出,也就降了R2上的电流,这样电路最终维持在恒定的给值上,也就实现了恒流工作。

如给定VREF为可调节的直流源,R2为2欧时,改变VREF可改变恒流值,VREF可用电位器调节输入或用DAC芯片由MCU控制输入,采用电位器可手动调节输出电流。

如采用DAC输入可实现数控恒流电子负载。

输出恒流值:

I=(R3/(R1+R3))/R2*U

图3.1恒流模式原理图

3.2横流模式最小输出电流

为了获得最小的电流,现将R3的电阻调到最大,即滑动变阻器打到100%处,如图3.2所示。

图3.2.1横流模式最小输出电流

图3.2.2横流模式最小输出电流

根据恒流输出值的公式,并将数值代入,可以求得最小输出电流为:

I=230.69mA

3.3横流模式最大输出电流

为了获得最大的电流,现将R3的电阻调到最小,即滑动变阻器打到5%处,如图3.2.1和3.2.2所示。

图3.3.1横流模式最大输出电流

图3.3.2横流模式最大输出电流

根据恒流输出值的公式,并将数值代入,可以求得最大输出电流为:

I≈3.36A

这个电路图是在调节R3的基础上进行的,R3调节范围在5%~100%,可以使输出电流为235.305mA~3.028A,基本满足了电流设置在了100mA~3A,并可以保持恒定的要求。

3.4恒流模式存在的问题及改进方案

由于上述电路的输出电流的调整完全依赖电位器R3的改变,因此R3的改变范围较大,这样在输出电流的调整过程中,容易调过头或调不足,要准确地实现100mA-3A范围的电流任一电流有些调整比较麻烦,必须反复调整,只依赖R3是比较困难的,如果将电位器R3用一个电位器R3'

和电阻R档串联实现,通过一个开关实现电阻R档的改变从而改变输出电流的范围,并在所选择的输出电流范围内通过改变电位器R3'

的阻值得到所需要的准确的直流电流输出。

如图3.4所示。

图3.4改进方案

第四章恒压模式

4.1恒压模式基本原理

在恒压工作模式时,电子负载所流入的负载电流依据所设定的负载电压而定,此时负载电流将会增加直到负载电压等于设定值为止,即负载电压保持不变。

恒压电路在用于测试充电器时是很有用的。

恒压模式下的原理图,如图4.1所示。

该电路采用的是三端集成稳压器电路方案,并辅以软启动电路和电压补偿电路设计而成的。

由LM317系列三端集成稳压器构成的稳压电路,其输出电压调节范围在1.25-37V之间,输出电流可达1.5A,内部带有过载保护电路,具有稳压精度高、工作可靠等特点。

由于LM317有一稳定的基准电压U(1.25V),故有:

U0=U*(1+R5/R3)=1.25*(1+R5/R3),

其中R3为固定电阻,故调节R5可以调节输出电压UO。

软启动电路由晶体管T,电阻R2,R4和电容器C3组成。

其作用是使电路输出电压U0有一个缓慢的上升过程,以适应感性负载(如直流电机)的启动特性。

当输入电压UI接入时,因C3上的电压不能突变,故T因基极电位较高而饱和导通,使U2(LM317的2脚电位)和U3都很低,故U0很小,随着C的充电,T的基极电位下降,其集电极电位(即U2)升高,使U3升高(因U32为一稳定电压),所以U0也升高。

当C充满电时,T被截止,启动电路失去作用,U0也达到设定值。

启动的时间可以通过改变C3和R4的值进行调整。

电压补偿电路是由电阻R1和二极管D组成。

因为要求输出电压从0V起调,LM317集成稳压器不能直接满足要求,需设计一个电压补偿电路,抵消LM317的1.25V最小输出电压。

U0=U3-UD

式中,U3为LM317的3脚电压;

UO为输出电压;

UD为二极管D的正向压降,即为补偿电压,其值略大于LM317的基准电压(1.25V)。

当调节R1,使U3达到与UD相等时,输出电压即为0V。

之后,当调节R4逐渐增大时,UO即由0V开始增大。

由于负载电流流过D,故D的最大工作电流应能适应负载电流的要求。

图4.1恒压模式电路图

4.2恒压模式最小输出电压

为了获得最小的恒定输出电压,将R5的电阻调到最小,即滑动变阻器打到0%处,如图4.2.1,图4.2.2和图4.3.3所示。

图4.2.1恒压模式最小输出电压

图4.2.2恒压模式最小输出电压

图4.2.3恒压模式最小输出电压

此时获得最小恒定电压1.263V

4.3恒压模式最大输出电压

为了获得最小的恒定输出电压,将R5的电阻调到最大,即滑动变阻器打到100%处,如图4.3.1,,图4.3.2和图4.3.3所示。

图4.3.1恒压模式最大输出电压

图4.3.2恒压模式最大输出电压

图4.3.3恒压模式最大输出电压

此时获得了最大恒定电压20.548V。

恒压模式是在调节R5的基础上进行的,R5调节范围在0%~100%,输出电压为1.263V~20.548V,基本满足了电压设置在1V~20V,并可以保持恒定的要求

4.4恒流模式存在的问题及改进方案

由于上述电路的输出电压的调整完全依赖电位器R5的改变,因此R5的改变范围较大,这样在输出电压的调整过程中,容易调过头或调不足,要准确地实现1-20V宽范围的电压任一电压有些调整比较麻烦,必须反复调整,只依赖R5是比较困难的,如果将电位器R5用一个电位器R5'

和电阻R档串联实现,通过一个开关实现电阻R档的改变从而改变输出电压的范围,并在所选择的输出电压范围内通过改变电位器R5'

的阻值得到所需要的准确的直流电压输出。

如图4.4所示。

图4.4改进电路

总结

经过这一次的课程设计,我感触颇多,对所学内容也进一步的加深了理解,学会了如何查找资料,利用资料,更重要的是合作。

在这一次的设计中,遇到了好多问题,却有很多收获。

首先是第一次的设计,按照最先的原理图连接出来后,我没能调试出正确的结果,仿真出了问题。

后来搜索了好多资料,和同组同学进行了激烈的讨论,最终大胆选择了新的设计方案,并利用网络和图书馆的资源,最终使这次课程设计得以顺利完成。

直流电子负载的设计方案有好几种,在网上找的资料好多采用的是单片机原理,由于时间有限,要学习单片机不大现实,串联式直流稳压负载的稳定性又不高,而三端集成稳压器电路简单易学,又有很好的稳定效果所以最终采用的是三端集成稳压器电路。

这次的设计还有很多不足之处,有待进一步改进。

要想获得更稳定的电路,可以尝试使用单片机,这需要日后更多的学习和实践来实现。

致谢

经过两个星期的艰苦奋战,我的课程设计基本完成。

在这里我要忠心的感谢我的指导老师,方俊初老师,正是他的悉心教导才能让我在这么短的时间内就完成了这一次的课程设计。

期间,方老师每天都来学校为我们指点,我也经常向方老师请教,他都很仔细耐心的向我解说。

在我遇到困难时,他不断的鼓励我,给我信心。

他风趣幽默的风格,让我们在解决问题和学习知识时感到无比轻松愉快。

这段时间和方老师的接触让我受益匪浅,在此在此表示,我对方老师的敬意和感激之情。

课程设计期间,同学和室友的帮助是巨大的,尤其是在方案确定的时候,感谢他们对我的支持和帮助,在此对他们致以最诚挚的谢意。

还要感谢那些帮助过我的,给我提出宝贵意见的,以及那些关心我的人。

最后,向在百忙中抽出时间对本文进行评审并提出宝贵意见的各位老师表示衷心地感谢!

此致

敬礼

附录

表一:

恒流模式元器件清单

元件序号

型号

参数

数量

VCC

12V

1

GROUND

V1

24V

V2

8V

R1

20欧

R2

2欧

R3

1K欧

U1

OP07AZ

Q1

SI9950DY_N

表二:

恒压模式元器件清单

R1,R2,R3

10欧

各一个

R4

100欧

R5

200欧

C1,C2,C3

100uF

LM317AH

FMMT617

D1

1N1199C

参考文献

【1】华成英,童诗白著《模拟电子技术基础》第四版高等教育出版社,2006

【2】阎石著《电子技术基础》第五版高等教育出版社,2006

【3】《单片机原理及应用》第三版机械工业出版社,2005.

【4】全国大学生电子设计竞赛训练教程。

电子工业出版社。

2005.1。

【5】孙肖子,邓建国,陈南等著《电子设计指南》高等教育出版社,2006.

【6】www.ECCN.com

【7】

【8】

课程设计任务书

任务:

设计一个直流电子负载

要求:

1.有恒流和恒压两种模式,并可以手动切换

2.工作于恒流模式时,不论输入电压如何变化,流过电子负载的电流保持恒定,且电流值可设定。

3.工作于恒压模式时,不论流经电子负载的电流如何,负载的端电压保持恒定,且电压值可设定。

4.电压设置范围:

1—20V。

5.电流设置范围:

100mA—3A。

指导老师(签名)______________

年月日

直流电子负载的设计

摘要:

直流电子负载有恒流、恒压、恒阻、恒功率四个模式,本文只讨论了前两种电子负载形式。

这次设计主要采用的是运算放大器和反馈网络所组成分电路,基本实现了电子负载有恒流和恒压两种模式,并可手动切换。

在恒流方式时不论输入电压如何变化(在一定范围内),流过该电子负载的电流恒定,且电流值可设定。

工作于恒压模式时,电子负载端电压保持恒定,且可设定,流入电子负载的电流随被测直流电源的电压变化而变化。

关键字:

电子负载横流模式恒压模式

目录

第一章绪论……………………………………………….1

第二章总体设计方案…………………………………….2

3.1恒流模式基本原理……………………………………3

3.2恒流模式最小输出电压……………………………….5

3.3恒流模式最大输出电压……………………………….7

3.4恒流模式存在问题及改进方案……………………….9

4.1恒压模式基本原理……………………………………10

4.2横压模式最小输出电流………………………………13

4.3横压模式最大输出电流………………………………15

4.4横压模式存在问题及改进方案……………………....17

总结………………………………………………………......18

致谢…………………………………………………………..19

附录…...……………………………………………………...20

参考文献……………………………………………………..22

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 农学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1