基于升降压电路的双向DCDC变换电路文档格式.docx

上传人:b****8 文档编号:22034090 上传时间:2023-02-02 格式:DOCX 页数:16 大小:135.28KB
下载 相关 举报
基于升降压电路的双向DCDC变换电路文档格式.docx_第1页
第1页 / 共16页
基于升降压电路的双向DCDC变换电路文档格式.docx_第2页
第2页 / 共16页
基于升降压电路的双向DCDC变换电路文档格式.docx_第3页
第3页 / 共16页
基于升降压电路的双向DCDC变换电路文档格式.docx_第4页
第4页 / 共16页
基于升降压电路的双向DCDC变换电路文档格式.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

基于升降压电路的双向DCDC变换电路文档格式.docx

《基于升降压电路的双向DCDC变换电路文档格式.docx》由会员分享,可在线阅读,更多相关《基于升降压电路的双向DCDC变换电路文档格式.docx(16页珍藏版)》请在冰豆网上搜索。

基于升降压电路的双向DCDC变换电路文档格式.docx

方案二:

采用Buck-Boost电路,选择合适的开关管、续流二极管,电能的转化效率高,且电路简单,功耗小,稳压范围宽,能很好的实现输入降压,输出升压。

但输入、输出电流皆有脉动,使得对输入电源有电磁干扰且输出纹波较大。

所以实际应用时常加有输入,输出滤波器。

方案一简单轻便但会影响电源的效率,而方案二中的Buck电路能很好保对证电源的降压要就对电池组充电,并且使电池组的充电率满足题目要求,所以采用方案二。

1.2测控电路系统的论证与选择

方案一:

采用基于51单片机的数控电路,测控精度高,但不能连续可调,制作过程复杂,工作量大,并且造价高,维护复杂。

基于UC3843的测控电路,电路简单,效率高,可靠性高,但随着负载的增大,输出波形变得不稳。

综合考虑采用采用方案二。

2系统理论分析与计算

2.1双向Buck-BOOST主拓电路的分析

Buck-Boost变换器是输出电压可低于或高于输入电压的一种单管直流变换器,其主电路与Buck或Boost变换器所用的元器件相同,也有开关管、二极管、电感、和电容构成。

如下图1所示。

Buck-Boost变换器也有电感电流连续和断续两种工作方式。

图2是电感电流连续时的主要波形。

图3是Buck-Boost变换器在不同工作状态下的等效电路图。

电感电流连续工作室时,有两种工作模式,图(3a)的开关管S1导通时的工作模式,图3(b)是开关管S1关断、L续流时的工作模式。

图1主电路

图2电感电流连续工作波形

S1导通S1断开

图3Buck-Boost不同开关模式下等效电路

2.2电感电流连续工作原理和基本关系电感电流连续工作时,Buck/Boost变换器有开关管S1导通和开关管S1关断两种工作模态。

在开关模态1[0~ton]:

t=0时,S1导通,电源电压Vin加载电感Lf上,电感电流线性增长,二极管D戒指,负

载电流由电容Cf提供:

t=ton时,电感电流增加到最大值iLmax,S1关断。

在S1导通期间电感电流增加量iLf

在开关模态2[ton~T]:

稳态工作时,S1导通期间iLf的增长量应等于S1关断期间iLf的减小量,或作用在电感

Lf上电压的伏秒面积为零,有:

由(2-8)式,若Dy=0.5,则Vo=Vin;

若Dy<

0.5,则Vo<

Vin;

反之,Dy>

0.5,Vo>

Vin。

设变换器没有损耗,则输入电流平均值Ii和输出电流平均值Io之比为

开关管S1截止时,加于集电极和发射极间电压为输入电压和输出电压之和,这也是二极管D截止时所承受的电压

由图1-2可见,电感电流平均值iLf等于S1和D导通期间流过的电流平均值IQ和ID之和,即:

 

开关管S1和二极管D电流的最大值iQmax、iDmax等于电感电流最大值iLfmax。

S1导通期间,电容Cf电压的变化量即输出电压脉动Vo由S1导通期间Cf放电量

QCf=IoDyT计算,因QCf=CfVo,故:

2.3控制方法与参数计算

1.Boost电路控制方法:

负反馈。

2.Buck电路控制方法:

正反馈+负反馈。

4.反馈深度:

TL431是一种并联稳压集成电路。

三端可调分流基准源、可编程输出电压:

2.5V~36V、电压参考误差:

±

0.4%,典型值@25℃(TL431B)、低动态输出阻抗:

0.22Ω(典型值)、温度补偿操作全额定工作温度范围、负载电流1.0毫安--100毫安。

全温度范围内温度特性平坦,典型值为50ppm/℃,最大输入电压为37V、最大工作电流150mA、内基准电压为2.495V(25°

C)。

6.软件算法:

15f2k60s2单片机是高速/低功耗的单片机,12时钟/机器周期和6时钟/机器周期可任意选择,内部集成MAX810专用复位电路,时钟频率在12MHz以下时,复位脚可直接接地。

工作电压:

5.5V-3.8V(5V单片机)/3.8V-2.4V(3V单片机)、工作频率范围:

0-40MHz,相当于普通8051的0~80MHz、用户应用程序空间4K/6K/7K/8K/10K/12K/13K/16。

K/32K/40K/48K/56K/61K/字节、片上集成1280字节/512/256字节RAM、工作温度范围:

0-75℃/-40-+85℃。

提高效率的方法:

提高频率,改善电路结构。

3电路与程序设计

3.1电路的设计

3.1.1系统总体框图

系统总体框图如图四所示:

图4系统总体框图

3.1.2给电池组充电Buck电路模块

降压充电模块原理图如图5(附录)所示。

图5降压buck电路原理图

3.1.3电池放电Boost升压模块

电池放电升压Boost电路原理图如图6所示。

图6升压Boost电路

3.1.4测控模块电路原理图测控模块电路如下图图7。

图7测控电路图

3.1.5电源系统需要直流稳压电源供电,采用基于LM7805和LM7815的直流稳压电路给单片机、放大器供电。

3.2程序设计

采用基于STC15F2K60S2的单片机系统,来控制电压和电流的显示,和调节数字电位计。

源程序如下:

#include"

STC15Fxxxx.h"

intrins.h"

codetab.h"

LQ12864.h"

stdio.h"

adc.h"

PCA.h"

#defineTimer0_Reload(65536UL-(MAIN_Fosc/1000))//Timer0中断频率,1000次/秒

#defineP1n_pure_input(bitn)P1M1|=(bitn),P1M0&

=~

(bitn)

typedefunsignedcharBYTE;

sbitX9313W_INC=P3^2;

//计数脉冲输入端,下降沿触发

sbitX9313W_UPDN=P3^3;

//方向,高电平加、低电平减

sbitX9313W_CS=P3^4;

//片选,低电平有效

/********************(STC12C5608AD11MHZz=1时精确延时1ms)

voiddelayms(unsignedintz)

{

unsignedintx,y;

for(x=z;

x>

0;

x--)for(y=1848;

y>

y--);

}

voidX9313W_SetVol(unsignedcharRNumber){

unsignedchari;

X9313W_INC=1;

_nop_();

X9313W_CS=0;

X9313W_UPDN=0;

for(i=0;

i<

32;

i++){X9313W_INC=1;

X9313W_INC=0;

X9313W_UPDN=1;

for(i=0;

RNumber;

i++){

X9313W_INC=1;

_nop_();

X9313W_INC=0;

}X9313W_INC=1;

X9313W_CS=1;

X9313W_UPDN=1;

X9313W_INC=1;

voidX9313W_IncVol(unsignedcharRNumber){

//先调到0

//调到指定值

//电阻值保存

X9313W_CS=0;

//加RNumber个指定值

X9313W_INC=0;

//电阻值保存

X9313W_CS=1;

voidX9313W_DecVol(unsignedcharRNumber)

X9313W_UPDN=0;

//减RNumber个指定值

/*************本地函数

voidDelayXus(BYTEn);

外部函数声明和外部变量声明*****************/

bitB_1ms;

//1ms标志u16msecond;

u16Bandgap;

unsignedintstep;

/**********************PWM配置函数************************/

/**********************ADC配置函数************************/

voidADC_config(void)

ADC_InitTypeDefADC_InitStructure;

//结构定义

ADC_InitStructure.ADC_Px

=ADC_P1_All;

//设置要做ADC的IO,

ADC_P10~ADC_P17(或操作),ADC_P1_All

ADC_InitStructure.ADC_Speed=ADC_180T;

//ADC

速度ADC_90T,ADC_180T,ADC_360T,ADC_540T

ADC_InitStructure.ADC_Power=ENABLE;

功率允许/关闭ENABLE,DISABLE

ADC_InitStructure.ADC_AdjResult=ADC_RES_H8L2;

//ADC结果调整,

ADC_RES_H2L8,ADC_RES_H8L2

ADC_InitStructure.ADC_Polity=PolityLow;

//优先级设置

PolityHigh,PolityLow

ADC_InitStructure.ADC_Interrupt=DISABLE;

//中断

允许ENABLE,DISABLEADC_Inilize(&

ADC_InitStructure);

//初始化

ADC_PowerControl(ENABLE);

//单独的ADC电源操作函数,ENABLE或DISABLE

//P1n_pure_input((1<

<

0)||(1<

1)||(1<

2)||(1<

3)||(1<

4)||(1<

5)||

(1<

6)||(1<

7));

//把ADC口设置为高阻输入

voidmain(void)

//unsignedchari;

//inta;

u16j;

unsignedcharc[10];

LCD_Init();

//oled初始化ADC_config();

Timer0_1T();

Timer0_AsTimer();

Timer0_16bitAutoReload();

Timer0_Load(Timer0_Reload);

Timer0_InterruptEnable();

Timer0_Run();

EA=1;

//打开总中断

LCD_CLS();

LCD_P8x16Str(0,0,"

step:

"

);

LCD_P8x16Str(0,2,"

AD0:

LCDlPSxl6SmF4=ADl'

-)

X9313wlssvol(ox

SfePH

WhiIe(I)

if(Bllms)InlS

LCDlCLS

B—lmsHif(++msecondVHlOo)3OOms

msecondH0-

GIADC1ObifReSU=(O)-

j"

GIADC10bResu(adis0

SPi-tf(c%∙2fA..5∙0二024∙0x

LCDlPSXl6str(402

jHGIADC10bResu(5xadISiI1

SPi-tf(c%∙2fv..3o二024∙0x

LCDlPkl6str(404

if(p24N0)

Sg++-if(ep"

H32)ep"

0-

if(p25N0)

if(ep;

HHo)Sfep"

31-

X9313wlsv(epx

SPrtf(c%2dJepr

dayms(100x

**********************TimeroImSπ-u⅞⅝⅝⅝⅝⅝⅝⅝⅝⅝⅝⅝⅝⅝⅝⅝⅝⅝⅝⅝⅝⅝⅝⅝⅝^

VOid⅛nerθ(VOid)imerrupfTlMERoIVECTOR

=DiSPlaySCan(-/Imsffi≡^25la

B_1ms=1;

//1ms标志

4测试方案与测试结果

4.1测试方案

1、硬件测试,测试电路的恒流恒压以及功率的设置。

2、软件仿真测试,测试程序功能的完整性,以及程序电流电压能满足对电路电流电压调节和显示精度的控制。

3、硬件软件联调,连接单片机和电源电路,测试两者功能的完整性,通过对硬件电路和程序参数的调整使其能很好的完成对电压电流的控制节及显示功能。

4.2测试条件与仪器测试条件:

检查多次,仿真电路和硬件电路必须与系统原理图完全相同,并且检查无误,硬件电路保证无虚焊。

测试仪器:

高精度的数字毫伏表,模拟示波器,数字示波器,数字万用表,指针式万用表。

4.3测试结果及分析

4.3.1测试结果(数据)基础部分测试结果(数据)

1、恒流充电测试

由基本要求1:

在U2=30V、充电电流在在1~2A范围内可调条件下,设置I1初始值为

步进A,步进值为0.1A,测试数据如表1.

表1电流调节测试

次数

1

2

3

4

5

6

7

理论值A

1.10

1.20

1.30

1.40

1.50

1.60

1.70

实际值A

1.00

1.11

1.31

1.44

平均精度

6%

充电时I1的变化率测试

由基本要求2:

I1=2A,调整直流稳压电源输出电压,使U2在24~36V范围变化,计算I1的变化率,如表2。

表2变化率

U2

24

26

28

30

32

34

I1实际值A

1.99

2.00

2.01

2.02

I1变化率

0.5%

1%

平均变化率

0.45%

3、变换器的效率测试

由基本要求3:

I1=2A,U2=30V,条件下,测量U1和I2的值,变换器的效率如下。

表3变换器效率

U1(A)

I2(A)

20

1.49

所以=(U1×

I1)÷

(U2×

I2)×

100%=89.5%。

经计算变换器的转换效率=90%。

4、I1的测量精度

由基本要求4:

I1在1~2A内变化,所测试量充电电流I1的测量精度如表4。

表4电流I1的测量精度

1.2

1.4

1.6

1.8

2.0

测量值A

1.19

1.39

1.61

精度

0.8%

0.7%

0.6%

平均值

0.52%

发挥部分测试结果(数据)

由发挥部分要求1,在充电模式下,使U2=230.5V,变换器的效率如下表

表5变换器的效率

测试次数

U1(V)

18.5

18.4

I1(A)

2.648

2.631

2.636

2.680

U2(V)

30.5

30.4

30..5

1.51

1.52

效率

94%

4.3.2测试分析与结论根据上述测试数据,并经过计算分析,得出以下结论:

1.在要求条件下电路对电流的调节精度达到6%,次达到了对电流的准确显示和要求精度的控制。

2.在要求条件下电路电流的变化率为0.45%,满足了题目对电流变化率的要求,同时说明电路的电流有很高的稳定性。

3.电路的转换效率在所定条件下为89.5%,有较高的转化效率,基本满足题目要求。

4.有测量数据可知电路有充电过呀保护、较高精度显示充电电流的功能。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1