塔顶冷凝器说明书.docx

上传人:b****2 文档编号:2197147 上传时间:2022-10-27 格式:DOCX 页数:31 大小:501.31KB
下载 相关 举报
塔顶冷凝器说明书.docx_第1页
第1页 / 共31页
塔顶冷凝器说明书.docx_第2页
第2页 / 共31页
塔顶冷凝器说明书.docx_第3页
第3页 / 共31页
塔顶冷凝器说明书.docx_第4页
第4页 / 共31页
塔顶冷凝器说明书.docx_第5页
第5页 / 共31页
点击查看更多>>
下载资源
资源描述

塔顶冷凝器说明书.docx

《塔顶冷凝器说明书.docx》由会员分享,可在线阅读,更多相关《塔顶冷凝器说明书.docx(31页珍藏版)》请在冰豆网上搜索。

塔顶冷凝器说明书.docx

塔顶冷凝器说明书

课程设计说明书

 

09MnNiDR塔顶冷凝器外壳

焊接生产工艺设计

作者:

刘保串

学号:

1103054323

学院(系):

材料科学与工程学院

专业:

材料成型与控制工程

教授

李志勇

指导教师:

2015年1月

 

附录一排版图

附录二筒体焊接工艺卡

附录三筒体制造工艺卡

1序言

石油化工领域中,精馏塔是一种使用非常频繁、非常重要的工艺设备,它的稳定运行直接关系到整个石油化工装置的产品质量及综合能耗。

塔顶冷凝器作为与精馏塔联合使用的重要耗能设备,通过对其合理设计能有效的使精馏塔稳定。

 本文主要介绍塔顶冷凝器外壳的制造及焊接工艺过程。

2焊接生产工艺性分析

2.1焊接结构工艺性审查

2.1.1产品样图结构审查

产品图纸如图2-1

图2-1塔顶冷凝器外壳

此次设计的设备为塔顶冷凝器外壳,母材材料:

09MnNiDR尺寸:

直径Φ1000mm总长3647mm壁厚8mm,主要加工手段为焊接,此外还采用冲压、卷弯、机加工等辅助工艺。

焊接方法采用埋弧焊和熔化极混合气体保护焊,接头形式为对接、角接。

2.1.2技术要求

本设备按《钢制焊接容器技术》条件JB/T4735-1997和《钢制列管式换热技术》条件GB151-1999进行制造试验和验收,并须同时遵从《压力容器安全监察规范》有关规定;焊接方法采用埋弧自动焊和熔化极混合气体保护焊;焊接结构型式除图中注明外,对接焊接按GB/T985-1988中规定,其余焊接按GB986-1988规定,法兰焊接按相应的法兰标准中规定;壳体对接焊缝应进行无损探伤检查,探伤长度不少于焊缝总长的20%,探伤等级为二级;设备完成后,壳程及管理都以0.408MPa(表压)进行水压试验。

2.1.3技术特性

塔顶冷凝器壳体技术特性如表2-1所示:

表2-1技术特性表

设计压力/MPa

设计温度/℃

介质

焊缝系数

腐蚀裕度/mm

换热面/m2

容器类别

管程

0.49

<-200℃

1

2

140

壳程

0.49

<-200℃

甲醇

蒸汽

2.2母材的焊接工艺性分析

2.2.109MnNiDR的特性

09MnNiDR低温用钢主要用于低温下工作的容器、管道和结构,如液化石油气储罐、冷冻设备及石油化工低温设备等,低温用钢可分为不含镍及含镍的两大类,其牌号、化学成分、力学性能如表1、表2所示。

对低温用钢的主要性能要求是保证在使用温度下具有足够的韧性及抗脆性破坏的能力。

低温用钢一般是通过合金元素的固溶强化、晶粒细化,并通过正火或正火加回火处理细化晶粒、均匀化组织,而获得良好的低温韧性,09MnNiDR低温钢的含碳量不高,在常温下具有较好的塑性和韧性,冷或热加工工艺均可采用。

09MnNiDR低温钢是以铁素体为基的低温钢,铁素体的晶粒度对断裂韧性的影响十分明显。

铁素体的晶粒尺寸越细小,钢的脆性转变温度将向低温方向移动。

因此,凡是促使细化晶粒的合金元素,当加入量适当时,都能改善其韧性。

Ti、Al、Nb等元素有很好的细化晶粒作用。

此外,通过正火处理也有利于获得细化晶粒的效果。

2.2.209MnNiDR的焊接性分析

焊接性是材料在限定的施工条件下焊接成按规定设计要求的构件,并满足预定服役要求的能力。

它包含两方面内容:

一是焊成的构件符合设计的要求;二是满足预定的使用条件,能够安全运行。

根据这两方面的内容,优质的焊接接头应具备两个条件:

即接头中不存在超过质量标准规定的缺陷,同时具有预期的使用性能。

焊接时,产生各种焊接缺陷和影响其接头性能的因素很多,既有钢材内在的因素,如化学成分、组织状态、厚度等,又有焊接条件的外在因素,如焊接材料、焊接方法、焊接工艺及参数、结构型式、焊工技术水平等。

以下从碳当量及合金元素对09MnNiDR钢焊接性进行分析。

1 碳当量计算。

焊接热影响区的淬硬和冷裂倾向,与钢材的化学成分有着密切的关系。

在化学成分当中,碳对钢材的淬硬和冷裂的影响最为明显。

通常把各种合金元素对淬硬和冷裂的影响都折合成碳的影响,再用碳当量公式进行计算。

国际焊接学会(IIW)碳当量C(%)公式为:

C=C+Mn/6+(Ni+Cu)/15+(Cr+Mo+V)/5

按此公式计算后C=0.356

09MnNiDR钢为铁素体+少量珠光体型低温用钢。

其碳当量≤0.44,淬硬倾向小,不易形成冷裂纹,焊缝具有较好的塑性和韧性,通常无需预热。

当板厚超过一定的厚度、接头刚性拘束较大或碳当量偏高时,应考虑预热。

但预热温度不要过高,否则会使热影响区晶粒长大,并在晶界析出氧化物。

所以,焊接时应控制焊接线能量和层间温度,焊后还应进行消除应力的热处理。

2 合金元素对焊接性的影响

钢中加入适量的合金元素不但能保证钢材的力学性能要求,而且影响其焊接性。

09MnNiDR低温钢中合金元素主要有C、Si、Mn、Ni、Nb、P、S等,对其焊接性起了很大的作用。

1)碳。

C含量是影响焊接性的主要元素。

碳能增加钢材的硬度,促使硫的偏析,故钢中wc越高,tcr越高,为此低温钢的wc应<0.20%。

钢中的碳与铁结合易于形成碳化物,严重地增大钢的脆性。

因为09MnNiDR低温钢中含碳量低,对冷裂纹敏感性很低,焊接性良好。

2)硅。

Si能显著提高钢的弹性极限,屈服强度和抗拉强度,当在0.5%左右时,能降低脆性转变温度;但当硅大于0.5%时则提高脆性转变温度,从而降低钢的焊接性能。

3)锰。

Mn为其主要合金元素,Mn的作用主要是通过固溶强化来提高钢的强度,并有利于提高钢的低温韧性。

Mn与Si在比例合适时,可以有很好的脱氧作用,对改善韧性是有利的。

Mn还有脱硫的作用,适当提高Mn的含量,有比较明显地提高韧性的效果。

因此低温钢应适当提高含锰量,并严格限制S和P含量。

4)镍。

Ni为其主要合金元素,能改善铁素体的低温韧性,它的作用大约是Mn的5倍,并具有显著降低钢的冷脆转变温度的作用。

在低温用钢中,含镍钢占有重要地位。

含镍钢必须严格控制C、S、P的含量,才能充分发挥Ni的有利作用。

5)铌。

Nb有很好细化晶粒的作用,加入适量可改善钢的韧性。

6)硫。

S使钢产生热脆性,降低钢的延展性和韧性,对焊接性不利。

硫与氧形成的非金属夹杂物对韧性危害极大,钢中硫氧含量越多,夹杂物越多,钢的韧性越低。

夹杂物的形态对韧性也有重大影响,当为长条状(如MnS)时,降低冲击韧性,而且造成纵横向冲击韧性严重的各向异性。

但因09MnNiDR低温钢中严格限制了其含量,故硫对其焊接性影响不大。

7)磷。

P作为有害杂质,能使钢产生冷脆性,严重降低钢的焊接性,但因09MnNiDR低温钢对硫含量严格要求,故硫对其焊接性影响不大。

8)09MnNiDR钢的焊接特点。

09MnNiDR低温钢含碳量≤0.12%,合金元素总含量≤5%,碳当量为0.35%。

09MnNiDR低温钢的焊接性良好。

虽然镍是提高钢淬透性的元素,但由于09MnNiDR钢含镍较低,碳当量不高,淬硬倾向较小,室温焊接时不易形成冷裂纹;钢中S、P等杂质元素的含量较低,也不易产生热裂纹。

通常板厚h<25mm不需预热,当板厚h>25mm或焊接接头拘束度较大时,应考虑预热,以防止产生焊接裂纹。

预热温度过高会使热影响区晶粒长大,在晶界可能析出氧化物和碳化物而降低韧性,所以预热温度一般在100~150℃,最高不超过200℃。

3 焊接时可能存在的问题及防止措施

a.冷裂纹

冷裂纹一般是在焊后的冷却过程中,在Ms点附近或200~300℃的温度区间出现。

冷裂纹的起源多发生在具有缺口效应的焊接热影响区或有物理、化学性质不均匀的氢聚集的局部地带。

Ni使钢的淬透性显著增大,但09MnNiDR钢含碳量低,S、P也被严格控制,故低镍低温钢的冷脆倾向不大,薄板熔焊时不必预热,厚板则须预热100~150℃。

b.热裂纹

热裂纹是在高温下产生的,而且都是沿着原奥氏体晶界开裂。

因为钢材不同,所以产生热裂纹的形态、温度区间和主要原因也各有不同,主要有结晶裂纹、高温液化裂纹。

母材含杂质(S、P、C、Si)偏高时,特别是硫和磷偏高会使结晶温度区间明显加宽。

但09MnNiDR钢含碳量低,S、P也被严格控制,热裂纹敏感性也不高。

c.回火脆性

由于回火处理时Ni使S在晶界富集和偏析,形成硫化物析出相,故含镍钢对回火脆性敏感。

d.如果焊接材料或焊接工艺参数等选择不合理,焊接接头很容易出现气孔、夹渣等缺陷,且焊接接头(焊缝、热影响区)的低温冲击吸收功很难达到要求。

4 其防止措施主要有以下几种:

a.严格控制焊接线能量和层间温度。

目的是使接头不受过热的影响,避免热影响区晶粒长大,降低韧性。

b.合理地选择焊接材料。

根据钢种的温度级别和低温冲击韧性合理地选择焊条或焊丝。

c.控制焊后热处理温度,避免产生回火脆性。

板厚h>25mm的低温钢焊接结构,焊后应采用消除应力热处理。

含有V、Ti、Nb、Cu、N等元素的钢种,在进行消除应力热处理时,当加热温度处于回火脆性敏感温度区时会析出脆性相,使低温韧性下降。

应合理选择焊后热处理工艺,以保证接头的低温韧性。

d.防止焊接接头的应力集中。

低温钢焊接,为保证焊缝质量,防止产生咬边、夹杂、未焊透、裂纹、弧坑、焊瘤和电弧擦伤,表面焊道必须圆滑过渡,重要焊缝应将焊道表面余高磨平,尽量减少应力集中。

2.309MnNiDR低温压力容器钢焊接工艺要点

焊接方法的选择

焊接具有回转体形状的圆柱筒体,可选用焊条电弧焊或埋弧焊,为了提高焊接生产率,首先应该采用埋弧焊,为了降低消耗,坡口设计应保证质量的前提下要选用窄间隙坡口,法兰、接管、支座等零件的焊接采用熔化极混合气体保护焊。

焊接材料的选用

埋弧焊焊接材料选择,经过查焊接工程手册,初步选用H10Mn2A,直径为4mm焊丝,焊剂选用YD507A,而熔化极气体保护焊时采用直径为2.4mm的H09MnNiDR焊丝。

2.3.1焊接过程注意事项

(1)焊接坡口形式的设计应避免采用焊不透或局部焊透的坡口,还要尽量减少焊缝的横截面积,以降低接头的残余应力,同时也可减少焊接材料的消耗量。

(2)坡口加工采用热切割时应注意防止母材边缘会形成一定深度的淬硬层,这种低塑性的淬硬层往往成为冷加工的开裂源。

(3)焊前必须消除焊接区钢板表面的水分,坡口表面的氧化皮、铁锈、油脂以及其他污物。

(4)焊接材料在使用前应按生产厂推荐的规范进行烘干。

(5)装配定位焊缝必须采用与正式焊缝同一类的焊条。

(6)为防止焊接接头晶粒粗大,塑韧性下降,焊接热输入量控制在25kJ/cm以下,尽量采用多层多道焊,焊道要稍薄一些。

(7)焊后要进行后热处理,并控制好冷却速度。

3焊接性实验

3.1工艺焊接性实验

3.1.1斜Y形坡口焊接裂纹试验法

它适用于碳钢和低合金高强度钢焊接热影响区冷裂纹的试验方法,通称为“铁研式”抗裂试验,后经改进称为“小铁研式”。

此试验方法已列为国家标准(GB4675.1-84),与日本JISZ3158-1966等效。

   

(1)试件的制备:

试件的形状和尺寸如图3-4图3-5所示。

试件的坡口采用机械切削加工。

   

(2)试验条件

   ①试验用焊条采用低碳钢及低合金高强度钢焊条,与试验的钢材相匹配,焊前要严格烘干。

   ②拘束焊缝采用双面焊接,注意不要产生角变形和未焊透。

   ③试件达到试验温度后,原则上以标准规范进行试验焊缝的焊接。

   (3)试验步骤

   ①按图3-4装配试件,先焊拘束焊缝。

   ②当采用手弧焊时,试验焊缝按图3-5所示进行,当采用自动送进装置焊接时,按图3-6所示进行。

    ③焊完试件放置48h以后,开始进行裂纹检测和解剖。

图3-4斜Y形坡口

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1