通信原理实验指导书Word格式文档下载.docx

上传人:b****6 文档编号:21747831 上传时间:2023-02-01 格式:DOCX 页数:37 大小:629.32KB
下载 相关 举报
通信原理实验指导书Word格式文档下载.docx_第1页
第1页 / 共37页
通信原理实验指导书Word格式文档下载.docx_第2页
第2页 / 共37页
通信原理实验指导书Word格式文档下载.docx_第3页
第3页 / 共37页
通信原理实验指导书Word格式文档下载.docx_第4页
第4页 / 共37页
通信原理实验指导书Word格式文档下载.docx_第5页
第5页 / 共37页
点击查看更多>>
下载资源
资源描述

通信原理实验指导书Word格式文档下载.docx

《通信原理实验指导书Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《通信原理实验指导书Word格式文档下载.docx(37页珍藏版)》请在冰豆网上搜索。

通信原理实验指导书Word格式文档下载.docx

并行码产生器   KS1、KS2、KS3:

8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;

发光二极管左起分别与一帧中的24位代码相对应

八选一US5、US6、US7:

8位数据选择器4512

三选一US8:

倒相器US10:

非门74HC04

抽样US9:

D触发器74HC74

图1-1数字信源方框图

图1-2帧结构

下面对分频器,八选一及三选一等单元作进一步说明。

(1)分频器

74161进行13分频,输出信号频率为341kHz。

74161是一个4位二进制加计数器,预置在3状态。

74193完成÷

2、÷

4、÷

8、÷

16运算,输出BS、S1、S2、S3等4个信号。

BS为位同步信号,频率为170.5kHz。

S1、S2、S3为3个选通信号,频率分别为BS信号频率的1/2、1/4和1/8。

74193是一个4位二进制加/减计数器,当CD=PL=1、MR=0时,可在Q0、QB、QC及QD端分别输出上述4个信号。

40160是一个二一十进制加计数器,预置在7状态,完成÷

3运算,在Q0和Q1端分别输出选通信号S4、S5,这两个信号的频率相等、等于S3信号频率的1/3。

分频器输出的S1、S2、S3、S4、S5等5个信号的波形如图1-4(a)和1-4(b)所示。

(2)八选一

采用8路数据选择器4512,它内含了8路传输数据开关、地址译码器和三态驱动器,其真值表如表1-1所示。

US5、US6和US7的地址信号输入端A、B、C并连在一起并分别接S1、S2、S3信号,它们的8个数据信号输入端x0~x7分别K1、K2、K3输出的8个并行信号连接。

由表1-1可以分析出US5、US6、US7输出信号都是码速率为170.5Kbit/s、以8位为周期的串行信号。

(3)三选一

三选一电路原理同八选一电路原理。

S4、S5信号分别输入到US8的地址端A和B,US5、US6、US7输出的3路串行信号分别输入到US8的数据端x3、x0、x1,U8的输出端即是一个码速率为170.5KB的2路时分复用信号,此信号为单极性不归零信号(NRZ)。

图1-4分频器输出信号波形

(4)倒相与抽样

图1-1中的NRZ信号的脉冲上升沿或下降沿比BS信号的下降沿稍有点迟后。

在实验二的数字调制单元中,有一个将绝对码变为相对码的电路,要求输入的绝对码信号的上升沿及下降沿与输入的位同步信号的上升沿对齐,而这两个信号由数字信源提供。

倒相与抽样电路就是为了满足这一要求而设计的,它们使NRZ-OUT及BS-OUT信号满足码变换电路的要求。

表1-14512真值表

C

B

A

INH

DIS

Z

x0

1

x1

x2

x3

x4

x5

x6

x7

Φ

高阻

FS信号可用作示波器的外同步信号,以便观察2DPSK等信号。

FS信号、NRZ-OUT信号之间的相位关系如图1-5所示,图中NRZ-OUT的无定义位为0,帧同步码为1110010,数据1为11110000,数据2为00001111。

FS信号的低电平、高电平分别为4位和8位数字信号时间,其上升沿比NRZ-OUT码第一位起始时间超前一个码元。

图1-5FS、NRZ-OUT波形

四、实验步骤

1、熟悉信源模块的工作原理以及时分复用的原理与应用。

2、打开电源开关及模块电源开关,用示波器观察数字信源模块上的各种信号波形。

3、用同轴电缆将FS输出与示波器外同步信号输入端相连接,把FS作为示波器的外同步信号,进行下列观察:

(1)示波器的两个通道探头分别接NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

(2)用拨码K1产生代码×

1110010(×

为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。

4、(选做)用另外一种方法实现本实验中的时分复用。

四、实验报告

1、说明时分复用的原理与应用。

2、记录并说明光栅上亮暗的位置、拨码开关、信源信号三者之间的关系。

3、记录时钟信号、信源信号、帧同步信号与位同步信号的波形,并说明三者之间的关系。

实验二数字调制实验

一、实验目的

1、掌握绝对码、相对码概念及它们之间的变换关系。

2、掌握用键控法产生2ASK、2FSK、2PSK、2DPSK信号的方法。

3、掌握相对码波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系。

4、了解2ASK、2FSK、2PSK、2DPSK信号的频谱与数字基带信号频谱之间的关系。

二、实验内容

1、用示波器观察绝对码波形、相对码波形。

2、用示波器观察2ASK、2FSK、2PSK、2DPSK信号波形。

3、用频谱仪观察数字基带信号频谱及2ASK、2FSK、2PSK、2DPSK信号的频谱。

三、基本原理

本实验使用数字信源模块和数字调制模块。

信源模块向调制模块提供位同步信号和数字基带信号(NRZ码)。

调制模块将输入的NRZ绝对码变为相对码、用键控法产生2ASK、2FSK、2DPSK信号。

(A)二进制数字调制原理

一.2ASK

1.产生

2.频谱

式中Ps(f)为m(t)的功率密度

谱零点带宽B=2fs=2RB

发滤波器最小带宽可为fs(理论值)

也可将基带信号处理后再进行2ASK调制

二.2FSK

键控法2FSK

式中

是m(t)的功率谱,

的功率谱当p

(1)=p(0)时,

=

2FSK信号带宽

三.2PSK(BPSK)(绝对调相)

1.

产生

2PSK

信息代码

2PSK规律:

信息代码1对应一种初相,信息代码0对应另外一种初相。

从另外一个角度而言,为“异变同不变”,即本码元与前一码元相异时,本码元内2PSK信号的初相相对于前一码元内2PSK信号的相位变化180°

,相同时则不变。

,Peo(f)中无离散谱fc

为m(t)的频谱

当p

(1)=p(0)时ps(f)中无直流,B=2fs

四.2DPSK(差分相位键控,相对调相)

1.产生码变换—2PSK调制法

绝对码ak

相对码bk变化规律:

“1变0不变”。

bk=ak+bk-1,设bk初

始值为1,各点波形如图所示:

第一个码元内信号的初相可任意假设。

ak

2DPSK规律:

“1变0不变”,即信息代码(绝对码)为“1”时,本码元内2DPSK信号的初相相对于前一码元内2DPSK信号的未相变化180°

,信息代码为“0”时,则本码元内2DPSK信号的初相相对于前一码元内2DPSK信号的末相不变化。

2.频谱同2PSK

(B)电路原理

数字调制单元的原理方框图及电路图分别如图2-1,图2-2所示。

图2-1数字调制方框图

本单元有以下测试点及输入输出点:

BS-IN位同步信号输入点

NRZ-IN数字基带信号输入点

CAR2DPSK信号载波测试点

AK绝对码测试点(与NRZ-IN相同)

BK相对码测试点

2DPSK(2PSK)-OUT2DPSK(2PSK)信号测试点/输出点,VP-P>

0.5V

2FSK-OUT2FSK信号测试点/输出点,VP-P>

2ASK-OUT2ASK信号测试点,VP-P>

图2-1中晶体振荡器与信源共用,位于信源单元,其它各部分与图2-2中的

主要元器件对应关系如下:

2(A)UM2:

双D触发器74HC74

2(B)UM2:

双D触发器74LS74

滤波器AUM5:

运放LF347,调谐回路

滤波器BUM5:

码变换UM1:

双D触发器74LS74;

UM3:

异或门74LS86

2ASK调制UM6:

三路二选一模拟开关4053

2FSK调制UM6:

2DPSK(2PSK调制)UM6:

放大器QM4:

三极管9013

射随器QM1:

将晶振信号进行2分频、滤波后,得到2ASK的载频2.2165MHZ。

放大器的发射极和集电极输出两个频率相等、相位相反的信号,这两个信号就是2PSK、2DPSK的两个载波,2FSK信号的两个载波频率分别为晶振频率的1/2和1/4,也是通过分频和滤波得到的。

下面重点介绍2PSK、2DPSK。

2PSK、2DPSK波形与信息代码的关系如图2-3所示。

图2-32PSK、2DPSK波形

图中假设码元宽度等于载波周期。

2PSK信号的相位与信息代码的关系是:

前后码元相异时,2PSK信号相位变化180,相同时2PSK信号相位不变,可简称为“异变同不变”。

2DPSK信号的相位与信息代码的关系是:

码元为“1”时,2DPSK信号的相位变化180。

码元为“0”时,2DPSK信号的相位不变,可简称为“1变0不变”。

应该说明的是,此处所说的相位变或不变,是指将本码元内信号的初相与上一码元内信号的末相进行比较,而不是将相邻码元信号的初相进行比较。

实际工程中,2PSK或2DPSK信号载波频率与码速率之间可能是整数倍关系也可能是非整数倍关系。

但不管是哪种关系,上述结论总是成立的。

本单元用码变换——2PSK调制方法产生2DPSK信号,原理框图及波形图如图2-4所示。

相对于绝对码AK、2PSK调制器的输出就是2DPSK信号,相对于相对码、2PSK调制器的输出是2PSK信号。

图中设码元宽度等于载波周期,已调信号的相位变化与AK、BK的关系当然也是符合上述规律的,即对于AK来说是“1变0不变”关系,对于BK来说是“异变同不变”关系,由AK到BK的变换也符合“1变0不变”规律。

图2-4中调制后的信号波形也可能具有相反的相位,BK也可能具有相反的序列即“00100”,这取决于载波的参考相位以及异或门电路的初始状态。

2DPSK通信系统可以克服上述2PSK系统的相位模糊现象,故实际通信中采用2DPSK而不用2PSK(多进制下亦如此,采用多进制差分相位调制MDPSK),此问题将在数字解调实验中再详细介绍。

图2-42DPSK调制器

2PSK信号的时域表达式为

S(t)=m(t)Cosωct

式中m(t)为双极性不归零码BNRZ,当“0”、“1”等概时m(t)中无直流分量,S(t)中无载频分量,2DPSK信号的频谱与2PSK相同。

2ASK信号的时域表达式与2PSK相同,但m(t)为单极性不归零码NRZ,NRZ中有直流分量,故2ASK信号中有载频分量。

2FSK信号(相位不连续2FSK)可看成是AK与AK调制不同载频信号形成的两个2ASK信号相加。

时域表达式为

式中m(t)为NRZ码。

图2-2数字调制原理图

图2-52ASK、2PSK(2DPSK)、2FSK信号功率谱

设码元宽度为Ts,fS=1/Ts在数值上等于码速率,2ASK、2PSK(2DPSK)、2FSK的功率谱密度如图2-5所示。

可见,2ASK、2PSK(2DPSK)的功率谱是数字基带信号m(t)功率谱的线性搬移,故常称2ASK、2PSK(2DPSK)为线性调制信号。

多进制的MASK、MPSK(MDPSK)、MFSK信号的功率谱与二进制信号功率谱类似。

本实验系统中m(t)是一个周期信号,故m(t)有离散谱,因而2ASK、2PSK(2DPSK)、2FSK也具有离散谱。

1、熟悉数字信源单元及数字调制单元的工作原理。

2、连线:

数字调制单元的CLK-IN、BS-IN、NRZ-IN分别连至信源单元

CLK-OUT、BS-OUT、NRZ-OUT。

打开电源开关和模块电源开关。

3、示波波CH1接AK,CH2接BK,信源模块的KS1、KS2、KS3置于任意状态(非全0),观察AK、BK波形,总结绝对码至相对码变换规律以及从相对码至绝对码的变换规律。

4、示波器CH1接2DPSK-OUT,CH2分别接AK及BK,观察并总结2DPSK信号相位变化与绝对码的关系以及2DPSK信号相位变化与相对码的关系(此关系即是2PSK信号相位变化与信源代码的关系)。

注意:

2DPSK信号的幅度可能不一致,但这并不影响信息的正确传输。

5、示波器CH1接NRZ_IN、CH2依次接2FSK-OUT和2ASK-OUT;

观察这两个信号与NRZ_IN的关系(注意“1”码与“0”码对应的2FSK信号幅度可能不相等,这对传输信息是没有影响的)。

6、用频谱议观察AK、2ASK、2FSK、2DPSK信号频谱(条件不具备时不进行此项观察)。

应该注明的是:

由于示波器的原因,实验中可能看不到很理想的2FSK、2DPSK波形。

五、实验报告要求

1、熟悉本实验所使用的2ASK、2FSK、2PSK、2DPSK产生方法的总体框架思路,得出自己的结论。

2、2ASK与2FSK

说明2ASK与2FSK的原理以及产生的主要方法,并根据实验记录进行验证。

3、2PSK与2DPSK

(1)设绝对码为全1、全0或10011010,求相对码。

(2)设相对码为全1、全0或10011010,求绝对码。

(3)设信息代码为10011010,载频分别为码元速率的1倍和1.5倍,画出2DPSK及2PSK信号波形。

(4)总结绝对码至相对码的变换规律、相对码至绝对码的变换规律并设计一个由绝对码至相对码以及一个由相对码至绝对码的变换电路。

(5)总结2DPSK信号的相位变化与绝对码的关系以及2DPSK信号的相位变化与相对码的关系(即2PSK的相位变化与信息代码之间的关系)。

实验三2ASK、2FSK数字解调实验

1.掌握2ASK过零检测解调原理。

2.掌握2FSK过零检测解调原理。

1.用示波器观察2ASK过零检测解调器各点波形。

2.用示波器观察2FSK过零检测解调器各点波形。

(A)2ASK解调

(1)包络检波

实际系统中x(t)迟后于eo(t),进行数学抽象时认为系统是物理不可实现的,是否有码间串扰决定于滤波器和信道的频率特性。

LPF用来滤除高频,一般对码间串扰无影响。

(2)相干解调

r(t)与

(1)中不同,有正、负值,其它同

(1)

(3)过零检测

具体波形可以参考2FSK过零检测波形。

判决准则:

在本实验中,2ASK解调采用过零检测的方法。

(B)2FSK解调

(1)包络检波

条件:

判决准则:

(2)相干解调

判决准则同

(1)

波形图如上所示。

(C)电路原理

本实验采用过零检测法解调2FSK信号。

图3-1、图3-2分别为解调器的方框图和电路原理图。

图3-12FSK过零检测解调方框图

2FSK解调模块上有以下测试点及输入输出点:

2FSK-IN2FSK信号输入点/测试点

BS-IN位同步信号输入点

FD2FSK过零检测输出信号测试点

LPF低通滤波器输出点/测试点

NRZ(B)位同步提取输出测试点

NRZ-OUT解调输出信号的输出点/测试点

2FSK解调器方框图中各单元与电路图中元器件对应关系如下:

整形1UF1:

A:

反相器74HC04

单稳1、单稳2UF2:

单稳态触发器74LS123

相加器UF3:

或门74LS32

低通滤波器UF4:

运算放大器LM318;

若干电阻、电容

整形2UF1:

B:

抽样器UF5:

在实际应用的通信系统中,解调器的输入端都有一个带通滤波器用来滤除带外的信道白噪声并确保系统的频率特性符合无码间串扰条件。

本实验系统中为简化实验设备,发端即数字调制的输出端没有带通滤波器、信道是理想的,故解调器输入端就没加带通滤波器。

2FSK解调器工作原理及有关问题说明如下:

图3-3为2FSK过零检测解调器各点波形示意图,图中设“1”码载频等于码速率的两倍,“0”码载频等于码速率。

图3-32FSK过零检测解调器各点波形示意图

  整形1和整形2的功能与比较器类似,在其输入端将输入信号叠加在2.5V上。

74HC04的状态转换电平约为2.5V,可把输入信号进行硬限幅处理。

整形1将正弦2FSK信号变为TTL电平的2FSK信号。

整形2和抽样电路共同构成一个判决电平为2.5V的抽样判决器。

单稳1、单稳2分别被设置为上升沿触发和下降沿触发,它们与相加器一

起共同对TTL电平的2FSK信号进行微分、整流处理。

LPF不是TTL电平信号且不是标准的非归零码,必须进行抽样判决处理。

UF1对抽样判决输出信号进行整形。

必须说明一点,2FSK解调的信号码不能为全0或全1,否则抽样判决器不能正常工作。

本实验使用数字信源模块、数字调制模块、载波同步模块、2DPSK解调模块及2FSK解调模块,它们之间的信号连结方式如图3-4所示。

实际通信系统中,解调器的位同步信号来自位同步提取单元,本实验中这个信号直接来自数字信源。

图3-4数字解调实验连接图

1、按图5-4将五个模块的信号输出、输入点连在一起。

打开交流电源开关和各使用模块的电源开关。

2、检查数字信源模块、数字调制模块及载波同步模块是否已在工作正常。

3、2FSK解调实验

示波器探头CH1接数字调制单元中的AK,CH2分别2FSK解调单元中的FD、LPF、NRZ(B)及NRZ-OUT,观察2FSK过零检测解调器的解调过程(注意:

低通及整形2都有倒相作用)。

LPF的波形应接近图3-3所示的理论波形。

4、2ASK解调实验

实验方式与2FSK一样

五、实验报告要求

1、说明2ASK以及2FSK的解调原理,并详细阐述过零检测法的原理,再结合原理说明本实验所采用的过零检测法的特点。

1、设信息代码为1001101,2FSK的两个载频分别为码速率的四倍和两倍,根据实验观察得到的规律,画出2FSK过零检测解调器输入的2FSK波形及FD、LPF、AK波形(设低通滤波器及整形2都无倒相作用)。

2、画出实验中的信源信号,2ASK以及2FSK调制信号以及最终的解调信号,并进行说明。

实验四 PCM编译码及TDM时分复用实验

1.掌握PCM编译码原理。

2.掌握PCM基带信号的形成过程及分接过程。

3.掌握语音信号PCM编译码系统的动态范围和频率特性的定义及测量方法。

1.用示波器观察两路音频信号的编码结果,观察PCM基群信号。

2.改变音频信号的幅度,观察和测试译码器输出信号的信噪比变化情况。

3.改变音频信号的频率,观察和测试译码器输出信号幅度变化情况。

(A)非线性PCM原理

一、A律PCM原理

1、A律13折线压缩特性

实际电路中,抽样,量化,编码是一次完成的。

以A律13折线压缩特性为例说明PCM原理

正信号:

8段,7个斜率

负信号:

整个信号范围内共16段,13个斜率的折线

每一段再等分为16份

x最小量化间隔△=1/128╳1/16=1/211,等效于12位均匀量化

x最大量化间隔△=1/25,等效于6位均匀量化

压缩特性表

段落

1

2

3

4

5

6

7

8

量化间隔(Δ)

16

32

64

起始电平(Δ)

0

128

256

512

1024

斜率

1/2

1/4

Q(dB)

24

18

12

-6

-12

2、A律PCM编码

C1C2C3C4C5C6C7C8

极性码段落码段内码

1正000①0000

0负001②0001

010③0010

………

111⑧1111

8421权值

例:

抽样值xk=1270(△),求PCM码

①xk>

0C1=1

②xk>

128C2=1手工

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 工学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1