中考数学总复习图形的认识初步精练精析及答案解析Word格式文档下载.docx

上传人:b****5 文档编号:21656221 上传时间:2023-01-31 格式:DOCX 页数:18 大小:221.48KB
下载 相关 举报
中考数学总复习图形的认识初步精练精析及答案解析Word格式文档下载.docx_第1页
第1页 / 共18页
中考数学总复习图形的认识初步精练精析及答案解析Word格式文档下载.docx_第2页
第2页 / 共18页
中考数学总复习图形的认识初步精练精析及答案解析Word格式文档下载.docx_第3页
第3页 / 共18页
中考数学总复习图形的认识初步精练精析及答案解析Word格式文档下载.docx_第4页
第4页 / 共18页
中考数学总复习图形的认识初步精练精析及答案解析Word格式文档下载.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

中考数学总复习图形的认识初步精练精析及答案解析Word格式文档下载.docx

《中考数学总复习图形的认识初步精练精析及答案解析Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《中考数学总复习图形的认识初步精练精析及答案解析Word格式文档下载.docx(18页珍藏版)》请在冰豆网上搜索。

中考数学总复习图形的认识初步精练精析及答案解析Word格式文档下载.docx

13.计算:

50°

﹣15°

30′= _________ .

14.将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°

,则∠AEB′= _________ °

15.如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是 _________ .

16.已知∠A=43°

,则∠A的补角等于 _________ 度.

三.解答题(共8小题)

17.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积和体积.

18.如图,已知M是线段AB的中点,P是线段MB的中点,如果MP=3cm,求AP的长.

19.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,求x、y的值.

20.已知:

点A、B、C在同一直线上,BC=AB,D为AC的中点,DC=14cm,求线段AB的长.

21.如图,延长线段AB到C,使BC=2AB,若AC=6cm,且AD=DB,BE:

EF:

FC=1:

1:

3,求DE、DF的长.

22.已知,如图,∠AOB+∠BOC=180°

,OE平分∠AOB,OF平分∠BOC.求证:

OE⊥OF.

23.如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°

,∠EOD=80°

,求∠BOC的度数.

24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.

(1)当∠AOB=80°

时,∠MON= _________ ;

(2)猜想∠MON与∠AOB有怎样的数量关系,写出结论并说明理由.

参考答案与试题解析

A.

D.

考点:

展开图折叠成几何体.

分析:

由平面图形的折叠及立体图形的表面展开图的特点解题.

解答:

解:

选项A,B,D折叠后都有一行两个面无法折起来,而且缺少一个面,所以不能折成正方体.

故选:

C.

点评:

只要有“田”和“凹”字格的展开图都不是正方体的表面展开图.

A.五棱柱B.六棱柱C.七棱柱D.八棱柱

认识立体图形.

专题:

几何图形问题.

根据棱锥的特点可得九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,然后分析四个选项中的棱柱棱的条数可得答案.

九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,

A、五棱柱共15条棱,故A误;

B、六棱柱共18条棱,故B正确;

C、七棱柱共21条棱,故C错误;

D、八棱柱共24条棱,故D错误;

B.

此题主要考查了认识立体图形,关键是掌握棱柱和棱锥的形状.

几何体的展开图;

截一个几何体.

选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.

考查了截一个几何体和几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.

A.0B.1C.

根据展开图折叠成几何体,可得正方体,A,B是同一棱的两个顶点,可得答案.

解;

AB是正方体的边长,

AB=1,

本题考查了展开图折叠成几何体,正确将展开图折叠成几何体是解题关键,难度不大.

A.我B.中C.国D.梦

专题:

正方体相对两个面上的文字.

利用正方体及其表面展开图的特点解题.

这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.

D.

本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.

A.中B.功C考D.祝

这是一个正方体的平面展开图,共有六个面,其中面“成”与面“功”相对,面“预”与面“祝”相对,“中”与面“考”相对.

A.两点确定一条直线

B.两点之间线段最短

C.垂线段最短

D.在同一平面内,过一点有且只有一条直线与已知直线垂直

直线的性质:

两点确定一条直线.

应用题.

根据公理“两点确定一条直线”来解答即可.

经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.

此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.

A.3B.2C.3或5D.2或6

两点间的距离;

数轴.

压轴题.

要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.

此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.

点A、B表示的数分别为﹣3、1,

AB=4.

第一种情况:

在AB外,

AC=4+2=6;

第二种情况:

在AB内,

AC=4﹣2=2.

在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.

A.两点确定一条直线B.垂线段最短

C.两点之间线段最短D.三角形两边之和大于第三边

线段的性质:

两点之间线段最短.

此题为数学知识的应用,由题意把一条弯曲的公路改成直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.

要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.

本题考查了线段的性质,牢记线段的性质是解题关键.

10.一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是 60π cm2(结果保留π).

几何体的表面积.

直接利用圆柱体侧面积公式求出即可.

∵一个圆柱的底面直径为6cm,高为10cm,

∴这个圆柱的侧面积是:

πd×

10=60π(cm2).

故答案为:

60π.

此题主要考查了圆柱体侧面积求法,正确根据圆柱体侧面积公式是解题关键.

算一次,则滚动第2014次后,骰子朝下一面的点数是 3 .

正方体相对两个面上的文字;

规律型:

图形的变化类.

规律型.

观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.

观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,

∵2014÷

4=503…2,

∴滚动第2014次后与第二次相同,

∴朝下的点数为3,

3.

本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.

12.如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF= 45 °

角的计算;

翻折变换(折叠问题).

根据四边形ABCD是矩形,得出∠ABE=∠EBD=∠ABD,∠DBF=∠FBC=∠DBC,再根据∠ABE+∠EBD+∠DBF+∠FBC=∠ABC=90°

,得出∠EBD+∠DBF=45°

,从而求出答案.

∵四边形ABCD是矩形,

根据折叠可得∠ABE=∠EBD=∠ABD,∠DBF=∠FBC=∠DBC,

∵∠ABE+∠EBD+∠DBF+∠FBC=∠ABC=90°

∴∠EBD+∠DBF=45°

即∠EBF=45°

45°

此题考查了角的计算和翻折变换,解题的关键是找准图形翻折后,哪些角是相等的,再进行计算,是一道基础题.

30′= 34°

30′ .

度分秒的换算.

计算题.

根据度化成分乘以60,可得度分的表示方法,根据同单位的相减,可得答案.

原式=49°

60′﹣15°

30′=34°

30′.

34°

此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.

,则∠AEB′= 65 °

根据折叠前后对应部分相等得∠AEB′=∠AEB,再由已知求解.

∵∠AEB′是△AEB沿AE折叠而得,

∴∠AEB′=∠AEB.

又∵∠BEC=180°

,即∠AEB′+∠AEB+∠CEB′=180°

又∵∠CEB′=50°

,∴∠AEB′=

=65°

65.

本题考查了角的计算以及折叠问题.图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.

15.如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是 ∠BOC .

余角和补角.

因为是一幅三角尺,所以∠AOB=∠COD=90°

,再利用∠AOD=∠AOB﹣∠BOD=90°

﹣∠BOD,∠BOC=∠COD﹣∠BOD=90°

﹣∠BOD,同角的余角相等,可知与∠AOD始终相等的角是∠BOC.

∵∠AOB=∠COD=90°

∴∠AOD=∠AOB﹣∠BOD=90°

﹣∠BOD,

∴∠AOD=∠BOC.

∠BOC.

本题主要考查了余角和补角.用到同角的余角相等.

,则∠A的补角等于 137 度.

根据补角的和等于180°

计算即可.

∵∠A=43°

∴它的补角=180°

﹣43°

=137°

137.

本题考查了补角的知识,熟记互为补角的两个角的和等于180°

是解题的关键.

几何体的表面积;

由三视图判断几何体.

几何综合题.

由已知三视图可以确定为四棱柱,首先得到棱柱底面菱形的对角线长,则求出菱形的边长,从而求出它的侧面积和体积.

该几何体的形状是直四棱柱,

由三视图知,棱柱底面菱形的对角线长分别为4cm,3cm.

∴菱形的边长为cm,

棱柱的侧面积=×

8=80(cm2).

棱柱的体积=×

8=48(cm3).

此题考查的是几何体的表面积及由三视图判断几何体,关键是先判断几何体的形状,然后求其侧面积和体积.

比较线段的长短.

点M的线段AB中点,AM=MB,点P是线段MB的中点,所以MP=PB,由此可得:

AM=2MP,所以AP=3MP.

∵P是MB中点

∴MB=2MP=6cm

又AM=MB=6cm

∴AP=AM+MP=6+3=9cm.

本题考点:

线段中点的性质,线段的中点将线段分成两个相等的线段,根据题意和图形得出各线段之间的关系,AP=AM+MP得出,然后结合已知条件求出AM和MP的长度,从而求出线段AP的长度.

19如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,如果正方体相对两个面上的代数式的值相等,求x、y的值.

二元一次方程的解.

由平面图形的折叠及立体图形的表面展开图的特点解题.3与a是相对,5﹣x与y+1相对,y与2x﹣5相对.

根据题意,得

(4分)

解方程组,得x=3,y=1.(6分)

注意运用空间想象能力,找出正方体的每个面相对的面

两点间的距离.

先根据D为AC的中点,DC=14cm求出AC的长,再根据BC=AB得出AB=AC,由此可得出结论.

∵D为AC的中点,DC=14cm,

∴AC=2CD=28cm.

∵BC=AB,

∴AB=AC=×

28=

cm.

本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.

根据BC=2AB,AC=6cm,得出AB,BC的长,再由AD=DB,BE:

3,得出BD,DE,EF的长,即可得出答案.

∵BC=2AB,AC=6cm,

∴AB=2cm,BC=4cm,

∵AD=DB,

∴AD=BD=1cm,

∵BE:

3,

∴BE=EF=BC=×

4=cm,

∴DE=BD+BE=1+=cm,

DF=BD+BE+EF=1++=

本题考查了两点之间的距离,注意各线段之间的联系是解题的关键.

角平分线的定义.

证明题.

利用∠AOB+∠BOC=180°

,由OE、OF分别是∠AOB和∠BOC的平分线,求出∠EOB+∠BOF=90°

,即可得出结论.

∵∠AOB+∠BOC=180°

∵OE、OF分别是∠AOB和∠BOC的平分线,

∴∠AOE=∠EOB,∠BOF=∠FOC,

∵∠AOE+∠EOB+∠BOF+∠FOC=180°

∴∠EOB+∠BOF=90°

∴OE⊥OE.

本题主要考查了角平分线及垂线,解题的关键是利用角平分线求解.

根据角平分线的性质,可得∠BOE的大小,根据角的和差,可得∠BOD的大小,根据角平分线的性质,可得答案.

∵OE是∠AOB的平分线,∠AOB=100°

∴∠BOE=∠AOB=50°

∵∠BOE+∠BOD=∠EOD=80°

∴∠BOD=∠EOD﹣∠BOE=80°

﹣50°

=30°

∵OD是∠BOC的平分线,

∴∠BOC=2∠BOD=60°

本题考查了角平分线的定义,利用了角平分线的性质,角的和差.

时,∠MON= 40°

 ;

(1)设∠CON=∠BON=x°

,∠MOC=y°

,则∠MOC=∠MOB+∠BOC=2x°

+y°

,由∴∠AOB=∠AOM+∠MOB=2x°

+y=2(x+y)°

=80,可得∠MON=∠MOB+∠NOB,即可求解.

(2)由∠AOB=∠AOM+∠MOB=∠MOC+∠MOB=∠MOB+2∠BON+∠MOB=2(∠BON+∠MOB)=2∠MON可得结论.

(1)∵ON平分∠BOC,

∴∠CON=∠BON,

设∠CON=∠BON=x°

,∠MOB=y°

则∠MOC=∠MOB+∠BOC=2x°

又∵OM平分∠AOC

∴∠AOM=∠COM=2x°

∴∠AOB=∠AOM+∠MOB=2x°

∵∠AOB=80°

∴2(x+y)°

=80°

∴x°

=40°

∴∠MON=∠MOB+∠NOB=x°

40°

(2)2∠MON=∠AOB.

理由如下:

∠AOB=∠AOM+∠MOB=∠MOC+∠MOB=∠MOB+2∠BON+∠MOB=2(∠BON+∠MOB)=2∠MON.

本题主要考查了角平分线的定义,解题的关键是利用了角平分线的定义和图中各角之间的和差关系,难度中等.

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1