外文文献及翻译发动机零件及其工作原理和模具设计与制造文档格式.docx

上传人:b****6 文档编号:21586284 上传时间:2023-01-31 格式:DOCX 页数:12 大小:529.92KB
下载 相关 举报
外文文献及翻译发动机零件及其工作原理和模具设计与制造文档格式.docx_第1页
第1页 / 共12页
外文文献及翻译发动机零件及其工作原理和模具设计与制造文档格式.docx_第2页
第2页 / 共12页
外文文献及翻译发动机零件及其工作原理和模具设计与制造文档格式.docx_第3页
第3页 / 共12页
外文文献及翻译发动机零件及其工作原理和模具设计与制造文档格式.docx_第4页
第4页 / 共12页
外文文献及翻译发动机零件及其工作原理和模具设计与制造文档格式.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

外文文献及翻译发动机零件及其工作原理和模具设计与制造文档格式.docx

《外文文献及翻译发动机零件及其工作原理和模具设计与制造文档格式.docx》由会员分享,可在线阅读,更多相关《外文文献及翻译发动机零件及其工作原理和模具设计与制造文档格式.docx(12页珍藏版)》请在冰豆网上搜索。

外文文献及翻译发动机零件及其工作原理和模具设计与制造文档格式.docx

作者所在系别

机械系

作者所在专业

机械设计制造及其自动化

作者所在班级

作者姓名

作者学号

指导教师姓名

指导教师职称

完成时间

译文标题

发动机零件及其工作原理和模具设计与制造

原文标题

EnginePartsandOperationandMouldDesignandManufacturing

作者

朱林杨春杰

译名

国籍

中国

原文出处

机电工程专业英语

译文:

汽车要始终根据使用者的要求进行设计。

汽车上使用的发动机必须要重量轻并且燃料损耗少,这是工程师设计各种类型发动机时主要考虑的两个因素。

汽车发动机可以是单缸的,单缸发动机只有一个气缸,而多缸发动机有多个气缸,所有气缸内的活塞都和曲轴相连,因此发动机可以是:

单缸——气缸可能直列也可能水平;

多缸——气缸可能直列也可能倾斜。

如今大多数的汽车使用火花点火、四冲程、往复式汽油发动机。

往复式汽油发动机每个气缸内都有一个圆形的活塞、一个连杆和一个曲轴。

它的工作原理很简单,活塞在气缸内向上移动,压缩它上面的空气和燃油的混合气。

压缩使空气和燃油非常易燃,当活塞到达它行程的顶端时燃油混合气被点燃。

活塞在气缸内被膨胀气体向下推,它又推动连杆使得曲轴旋转,曲轴回转产生能量推动汽车。

伴随曲轴转动,活塞又返回到气缸顶部再一次重复循环,活塞持续上下运动,这就是发动机被称作往复式发动机的原因。

燃烧的混合气被气缸盖和气缸垫密封在气缸的顶部,如图26.2所示。

气缸盖上有进气口和排气口,进气口允许空气燃油混合气流入气缸,排气口允许燃烧后的废气排出,每个口都有一个气门密封,它由凸轮轴上的凸轮打开,被气门弹簧关闭,如图26.2所示。

活塞靠活塞环在气缸里密封,当活塞上下运动时,活塞环沿着气缸壁滑动。

图26.1气缸组成示意图图26.2气缸气门操作示意图

图26.3四冲程循环示意图

四冲程循环

在这里用单缸发动机来描述四个冲程的循环。

如图26.3所示。

汽车发动机实际上由多个气缸。

活塞从行程顶端到行程底端的运动叫做一个冲程,每个循环要求燃烧空气燃油混合气有四个冲程,因此,叫做四冲程循环。

在进气冲程,活塞被旋转的曲轴向下拉,在它上方产生一个真空,因为在活塞向下移动时进气门打开,空气燃油混合气通过进气门进入气缸,混合气是由燃油系统提供给气缸的。

当一部分汽油和15倍的空气混合后尤其易燃,雾化使得混合气体成雾状。

压缩冲程,活塞在气缸内返回,压缩混合气体,使它更加易燃。

当活塞接近它行程的顶端时,火花塞点燃混合气。

做功冲程,燃烧后的混合气体迅速膨胀,迫使活塞在气缸内向下移动,当活塞接近行程底部终点时,排气门打开使得燃烧的气体可以在活塞再一次在气缸内向上运动之前排出。

排气冲程,活塞向上运动,通过排气门把气缸内残留的废气挤压出去,随着曲轴的连续转动,活塞在气缸内上下运动,重复四冲程的循环。

模具设计与制造

CAD和CAM广泛用于模具的设计和制造中。

CAD允许你在屏幕上画出模型,然后采用三维动画从各个角度进行察看,最后通过在数字仿真模型上引入各类参数(压力、温度、冲力等)进行测试。

而CAM,从另一方面来说,能够控制制造质量。

这些计算机技术的优点是很多的:

设计时间短(可用计算机的速度进行修改)、费用低、制造快,等等。

这种新的方法还允许进行小批量生产,可以在最后一分钟对某个特定零件的模具进行改动。

最后这些新工艺还可用来制造复杂的零件。

模具的计算机辅助设计

一直以来模具的制图是一项费时的任务,它不属于创造性工艺过程的一部分。

制图不是工艺过程所要求的部分,但对工艺组织不说是必需的。

计算机辅助设计(CAD)是指采用计算机及其外围装置来简化和提高设计过程。

CAD系统提供了一种高效的设计方法,并且当它和坐标测量机器和其他检验设备结合使用时可用来创立检验程序。

在选择工艺顺序时CAD数据将发挥关键的作用。

一个CAD系统由3个基本的部件组成:

硬件、软件、用户。

一个典型的CAD系统的硬件部分包括一个处理器、一个系统显示器、一个键盘、一个数字转换器和一个绘图仪。

而CAD系统的软件部分由允许其完成设计和画图功能的程序组成。

用户是模具的设计者,他采用硬件和软件来完成设计过程。

在产品的三维数据的基础上,应首先对模芯和型腔进行设计。

通常设计人员先进行零件的预设计,这意味着可以改变围绕模芯和型腔所进行的工作。

现代CAD系统可支持该设计,先针对确定好的画图方向计算出一条分模线,将零件分成模芯和型腔两侧,并生成出流表面和截流表面。

在计算出零件的最佳设计草案后,再确定型腔、滑道和嵌件的位置和方向。

然后在初步设计阶段,粗略地定出模具部件的位置和几何形状——例如滑动装置、喷出系统等。

有了这些信息,便可确定板的大小和厚度,并从产品标准目录中选取相应的标准模具。

如果没有一个标准的模具能满足需要,则选择和要求最接近的标准模具并做相应修改——通过调整限制和参数使得任意数量的任意尺寸的板子都能用于设计中。

对功能部件进行细化,并加入标准部件完成整个模具的设计(图23.1)。

这一切均在三维空间中进行。

此外,模具系统还提供了对零件进行检查、修改和细化的功能。

早在这个阶段,就可以自动生成图纸和材料清单了。

通过运用模具设计系统的三维设计及功能,可在开始阶段就消除二维设计中的典型错误——例如冷却系统和部件/型腔间的碰撞或孔的位置错误。

在任何阶段都能生成材料和图纸的清单——从而能够准时定购材料,并且总是具备实际的文件可用来与客户进行探讨,或者对模具制造商来说总是能给出报价。

一个特定的三维模具设计系统的使用能缩短研发周期。

提高模具质量,增进团队合作,使设计人员从沉闷的日常工作中解脱出来。

但经济上的成功主要取决于工作流程的组织。

只有采取了适当的组织方法和人员评估策略才能缩短研发周期。

零件设计、模具设计、电气设计以及模具制造部门必须紧密合作,协同工作。

模具的计算机辅助制造

减少制造费用和研发周期的一个方法是建立能够充分发挥设备和人员潜能的制造系统。

这类制造系统的基础是采用CAD数据来帮助对主要工艺做出决策,使得最终能够提高机器精度并减少不直接从事生产的时间。

这就被称为计算机辅助制造(CAM)。

CAM的目的是,如果可能的话,通过从计算机工作站启动机器运作,从而直接生产出模具断面而不需要经过中间步骤。

对于一个好的CAM系统,自动化不仅仅体现在某个独立的细节上。

加工工艺的自动化还体现在组成一个零件的各个侧面之间,最终导致方法路径的最优化。

当你要产生多种特征时,CAM系统会为你构建一个工艺规划。

它会在系统分析的基础上指定操作步骤以减少工具的变动以及所采用的工具的数目。

在CAM方面,发展趋势是新技术和新工艺,例如微研磨,以支持带复杂三维结构和高表面质量的高精度注塑模具的制造。

CAM软件将继续在软件本身固有的智能化加工的深度和广度上发展,直至计算机数值控制(CNC)编程工艺变成完全自动化。

对于要求加工操作步骤能更灵活地组合在一起的先进的多功能加工工具来说尤其如此。

CAM软件在保持机械师所需要的控制的同时,将继续使冗余的制造工艺逐渐自动化,使其通过计算机更快且更精确地进行操作。

在强调模具制造业在维持质量的同时还要以最高效的方式制造模具的今天,模具制造商们需要紧跟最新的软件技术包,以便使他们能够快速地规划并制造出复杂的模具,从而减少模具生产时间。

简言之,模具制造业正朝着提高CAD和CAM之间以及CAM和CNC之间数据交换的质量方向发展,并且CAM软件在涉及加工工艺方面变得更为智能化——从而减少了生产周期和总的加工时间。

同时五轴加工已作为“必须有的”加工方式出现在车间工场上——尤其是在涉及型腔较深的场合。

随着电子数据处理(EDP)被引入模具制造业,模具制造出现了新的发展机会,从而可以缩短生产时间、提高成本效率并获得更好的质量。

原文:

Automobilesaredesignedkeepinginviewtherequirementsofusers.Significantly,theenginesusedinautomobilesmustbelightinweightandtheirfuelconsumptionmustbeminimum.Thesearethetwomainconsiderationswhichhaveledengineerstodevelopvarioustypesofautomobileengines.

Anenginemaybeasingle-cylinderengine.Inasingle-cylinderenginethereisonlyonecylinder,whereasinamulti-cylinderenginethereismorethanonecylinder.Thepistonsofallthecylindersareconnectedtothecommoncrankshaft.Thereforeenginesmaybe:

Single-cylinderCylindermaybeverticalorhorizontal

Multi-cylinderCylindermaybeverticalorinclinedtoverticalplane

Mostoftoday!

ˉsautomobilesusespark-ignitedfour-strokereciprocatinggasolineengines.

Areciprocatinggasolineenginehasaroundpistoninacylinder,aconnectingrod,andacrankshaft.Theprincipleofitsoperationissimple.Thepistonmovesupinthecylinder,compressingamixtureofairandfuelinfrontofit.Compressingtheairandfuelmakesitveryflammable.Whenthepistonreachesthetopofitstravel,theair-fuelmixtureisignited.Asthepistonispusheddowninthecylinderbytheexpandinggases,itpushesontherod,forcingthecrankshafttorotate.

Poweristakenfromtherotationofthecrankshafttopropelthecar.Asthecrankshaftturns,thepistonisreturnedtothetopofthecylindertorepeatthecycleagain.Thecontinuingup-and-downmotionofthepistoniswhytheengineiscalledareciprocatingengine.

Theburningmixtureissealedintothecylinderonthetopendbyacylinderheadandaheadgasket(Fig.26.1).Thecylinderheadhasintakeandexhaustports.Theintakeportallowstheflowoftheair-fuelmixtureintothecylinder.Theexhaustportallowstheescapeoftheexhaustgasesafterthemixturehasbeenburned.Eachportissealedbyavalvethatisopenedbyalobeonthecamshaftandclosedbyaspring(Fig.26.2).Thepistonissealedtothecylinderwithpistonringsthatslideagainstthecylinderwallasthepistonmovesupanddown.

Four-StrokeCycle

Thefour-strokecycleisdescribedhereusingasinglecylinderengine(Fig.26.3).Automobileenginesactuallyhavemultiplecylinders.Themovementofthepistonfromthetopofitstraveltothebottomofitstraveliscalledastroke.Eachcyclerequiredtoburntheair-fuelmixturehasfourstrokes.Hencethename,four-strokecycle.

Fig.26.1EnginePartsFig.26.2TheValveIsOperatedbyaLobe

Fig.26.3TheFour-StrokeCycle

Duringtheintakestroke,thepistonispulleddownbytheturningcrankshaft,creatingavacuumaboveit.Becausetheintakevalveisopenwhilethepistonismovingdown,theair-fuelmixtureisdrawnintothecylinderthroughtheintakevalveport.Themixtureissuppliedtothecylinderbythefuelsystem.Gasolineisespeciallycombustiblewhenonepartofitisatomizedwithabout15partsofair.Atomizationmakesthemixturelikefog.

Thepistonmovesbackupinthecylinderonthecompressionstroke,compressingtheair-fuel,makingitfarmorecombustible.Asthepistonapproachesthetopofitstravel,asparkplugignitesthemixture.

Duringthepowerstroketheburningfuelexpandsrapidly,forcingthepistontomovebackdowninthecylinder.Theexhaustvalveopensasthepistonapproachesthebottomofitstravel.Thisissothatburninggasescanescapebeforethepistonbeginstomoveupwardinthecylinderonceagain.

Duringtheexhauststrokethepistonmovesbackup,forcinganyremainingexhaustgasfromthecylinderthroughtheopenexhaustvalve.Asthecrankshaftcontinuestorotate,thepistongoesbackdowninthecylinderasthefour-strokecyclerepeatsitself.

MouldDesignandManufacturing

CADandCAMarewidelyappliedinmoulddesignandmouldmaking.[1]CADallowsyoutodrawamodelonscreen,thenviewitfromeveryangleusing3-Danimationand,finally,totestitbyintroducingvariousparametersintothedigitalsimulationmodels(pressure,temperature,impact,etc.).CAM,ontheotherhand,allowsyoutocontrolthemanufacturingquality.Theadvantagesofthesecomputertechnologiesarelegion:

shorterdesigntimes(modificationscanbemadeatthespeedofthecomputer),lowercost,fastermanufacturing,etc.Thisnewapproachalsoallowsshorterproductionruns,andtomakelast-minutechangestothemouldforaparticularpart.Finally,also,thesenewprocessescanbeusedtomakecomplexparts.

Computer-AidedDesign(CAD)ofMould

Traditionally,thecreationofdrawingsofmouldtoolshasbeenatime-consumingtaskthatisnotpartofthecreativeprocess.Drawingsareanorganizationalnecessityratherthanadesiredpartoftheprocess.

Computer-AidedDesign(CAD)meansusingthecomputerandperipheraldevicestosimplifyandenhancethedesignprocess.CADsystemsofferanefficientmeansofdesign,andcanbeusedtocreateinspectionprogramswhenusedinconjunctionwithcoordinatemeasuringmachinesandotherinspectionequipment.CADdataalsocanplayacriticalroleinselectingprocesssequence.

ACADsystemconsistsofthreebasiccomponents:

hardware,software,users.ThehardwarecomponentsofatypicalCADsystemincludeaprocessor,asystemdisplay,akeyboard,adigitizer,andaplotter.ThesoftwarecomponentofaCADsystemconsistsoftheprogramswhichallowittoperformdesignanddraftingfunctions.Theuseristhetooldesignerwhousesthehardwareandsoftwaretoperformthedesignprocess.

Basedonthe3-Ddataoftheproduct,thecoreandcavityhavetobedesignedfirst.Usuallythedesignerbeginswithapreliminarypartdesign,whichmeanstheworkaroundthecoreandcavitycouldchange.ModernCADsystemscansupportthiswithcalculatingasplitlineforadefineddraftdirection,splittingthepartinthecoreandcavitysideandgeneratingtherun-offorshut-offsurfaces.Afterthecalculationoftheoptimaldraftofthepart,thepositionanddirectionofthecavity,slidesandinsertshavetobedefined.Then,intheconceptualstage,thepositionsandthegeometryofthemouldcomponents—suchasslides,ejectionsystem,etc.—areroughlydefined.Withthisinformation,thesizeandthicknessoftheplatescanbedefinedandthecorrespondingstandardmouldcanbechosenfromt

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1