仿射变换理论及其在几何中的应用Word格式.docx

上传人:b****6 文档编号:21505731 上传时间:2023-01-30 格式:DOCX 页数:11 大小:90.52KB
下载 相关 举报
仿射变换理论及其在几何中的应用Word格式.docx_第1页
第1页 / 共11页
仿射变换理论及其在几何中的应用Word格式.docx_第2页
第2页 / 共11页
仿射变换理论及其在几何中的应用Word格式.docx_第3页
第3页 / 共11页
仿射变换理论及其在几何中的应用Word格式.docx_第4页
第4页 / 共11页
仿射变换理论及其在几何中的应用Word格式.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

仿射变换理论及其在几何中的应用Word格式.docx

《仿射变换理论及其在几何中的应用Word格式.docx》由会员分享,可在线阅读,更多相关《仿射变换理论及其在几何中的应用Word格式.docx(11页珍藏版)》请在冰豆网上搜索。

仿射变换理论及其在几何中的应用Word格式.docx

反之,在(1.00)上取£

(公弘)及《(毛,%)的坐标适合方程,即

Ar.+B\,+C=O,(1.02)

Av2+By2+C=0.(1.03)

只要证明任一坐标适合方程的点P'

3,y'

)一定与共线即可,由于

Ax,+By,+C=Q,(1.04)

因A,B,C不全为零,(1.02),(1.03),(1.04)可理解为关于A,5,C,的齐次线

性方程组,由于A,民。

不全为零,所以

/y'

1

%弘1=0,

9月1

即P,[4共线.

定义1.1在平面上点之间的一个线性变换

J,(1.05)y1=a2lx+a22y+a2i,

a2la22

叫做仿射变换,其中(见城(£

川分别是p,p'

的仿射坐标.

从仿射变换的代数表示可知平面内不共线的三对对应点(原像不共线,像也不共线)唯一决定一个仿射变换,称为仿射几何的基本定理.

例1有公式所确定的变换表示分别沿轴与轴两个压缩变换的乘积,显然是一个仿射变换.

注1)正交变换是仿射变换的特例.

2)仿射变换的几何意义就是平面到自身的平行影链.

2仿射变换的基本性质

定义1.2图形经过任何仿射变换后都不变的性质(量),称为图形的仿射性质(仿射不变量).

性质1仿射变换将直线变为直线.

证明有仿射变换的代数表示式(1.05),其逆变换为

x=/?

..x,+…,b..

{J,(1.06)其中1nJ,0.

y=b2lx+b22y+么3,b2lb22

设有直线八Ax+5y+C=0

仿射变换(1.06)下,有

(他]+叫I+(AZ?

12+叫?

)y'

+(做3+劭23+C)=0.(1.07)

由于A5不全为零且P"

'

0,故Ab”+Bb2l和Abn+Bb22不全为零.

因此(1.07)是总了关于的一次方程,从而它表示一直线,及即仿射变换将直

线变为直线.

性质2两条平行直线经过仿射变换后仍变为两条平行直线

证已知两条平行直线:

「芋+町+£

,其中3=旦去&

经过仿射变换(1.06)后,44分别变为

(A"

"

+)x'

+(A4r+瓦"

22)y'

+A'

++G=o.(i.os)

(A.Z?

n+B2b1JV+(A,Z?

12+B*22)y'

+A,Z?

13+B2b25+C1=0.(1.09)

aAB..C..

令,"

=」=&

—1wk,

AB2C2

于是

单+蜂=尤绛+蜂=%,且A九+%3+Qw&

(否则&

=c,k)这说明)A2bn+B2b2lA2b12+B2b22A,Z?

13+B2b2i+C2

(L08),(1.09)表示的直线平行.

1)

2)

3)

4)

两直线平行是仿射变换的不变性质.如

任何一个仿射变换将平面仿射作标系变为另一个仿射坐标;

任何一个变换将平行四边形变为平行四边形;

任何一个仿射变换将梯形变为梯形;

任何一个仿射变换将等腰三角形变为三角形;

通常我们把经过仿射变换可以相互转换的图形为仿射等价的图形.

例如圆与椭圆是仿射等价的.

下面引入仿射变换基本不变量:

单比(仿射比)

定义1.3设月,[是有向直线的两个顶点,尸是这有向直线的另一点,尸分有向线段[「为两个有向线段《『和盛,则其代数长的比华叫做共线三点匕的

p、p

单比,记为记&

P),即(£

;

尸)=督.(1.10)特别当P为Rg的中点时,(/]/>

P)=-l.

设EG,y)(i=L2,3)是一条直线上的三点,其中(/丫.)为化的仿射坐标(图2),则

同理(桃记)=上(1.12)

■%一月

性质3任何一个仿射变换保持共线三点的单比不变.

证在仿射坐标系下,月(七,yj(i=l,2,3)是一条直线上的三点,它们在仿射变换

(1.05)下的像为匕'

(《乂),由于仿射变换将共线点变为共线点,因此£

”=1,2,3)

是另一条直线上的三点,

又===

因此

(p>

p;

p^\==(GR+%」+小)-(Gd+&

乂+%)=。

£

一工)+4式儿一儿)=2

‘"

X'

-X'

(可/3+。

12》3+可3)一(4/2+。

]2%+。

13)勺氏一刍)十%(为一%)

所以

(64'

记'

)=仍4隹).

定义1.4平面内一点变换,如果满足下列条件:

(1)任何共线点的像仍是共线点.

(2)任何共线三点的单比不变.

性质4两平行线段的比是仿射不变量.

证设线段A5||CZ),

经仿射变换后,其对应线段和C7T也平行,

现在要证

AB_A6'

CD-CD7'

连接60,作C£

||5O交于E(图3),

由于仿射变换保持平行性和结合性(将共线点变为共线点),

所以E的对应点£

在A6'

上,且CfEf\\BD,由于仿射变换保持共线三点的单比不变,有

即能祟

又BE=CD,BE=CD:

,ABAE

故——=.

CDCD'

至此,一些主要涉及平行线,线段中点及平行线段的比等几何性质,都是仿射不变性质,例如

(1)三角形两边中点的连线平行于第三边且它的长等于第三边的一半.

(2)任意平行四边形对角线互相平分.

(3)任意三角线的重心(三条中线的交点)

性质5⑴两个三角形面积的比是仿射不变量.

证设在直角坐标系下,已知不共线三点玖zy)(i=l,2,3),则优月的面积S.秋鸟为

是转玛=;

占为1的绝对值.不必1

经仿射变换(1.05)后匕为玖匕,4)。

=1,2,3),则尸;

=4/,+《2乂+%3,;

y-=a2lxi+a22yi+a2i9

△印庄'

的面积

-2E必22一〃12%11S464与.

同理,

另一个三角形20m3与其三角形。

22'

的面积的关系•

S:

01dd=\anai2-ana2SS^Q2&

故S一生鸟=SaP;

qq,,

力乌乌。

,乙典。

推论1两个平行四边形面积之比是仿射不变量.

推论2两个封闭图形面积之比是仿射不变量.

例1求椭圆的面积(图4).

方法一:

解在直线坐标系下,

椭圆1+2=1.a-b-

X=X

经仿射变换{,a(1.13)y=t>

b

变为圆

如图4,椭圆内△045经(1.⑶对应为△045,其中

0(0,0),4伍,0),A三A,5'

(0m)从而椭圆的面积圆的面积

c,OA'

8,

OAB

椭圆的面积7ra

求得椭圆所围面积为

例2试证明梅内劳斯(Menelaus)定理⑶:

在△ABC的三边或8C,CA,A5其延长线上分别取三点L,M,N,则L,M,N共线的充要条件是

丝也.四一

LCMANB

证以4为原点AB^AC为坐标向量建立仿射坐标系如图五

 

若令bL=al&

cM=〃mA,aN=unB,则根据定比分点公式,有关点的坐标为

/1j\

出。

)风,。

)。

」),4Km贝。

U+u'

i+aJ

所以LA?

II斯的充要条件是

11A

1+21+41+4人卜=0.

u1

1+D1+〃

化简得4〃。

=一1,(1.14)式成立.

古希腊亚历山大里亚的数学家、天文学家梅内劳斯(公元98年左右),在其幸运的保留下来的三卷W球面几何2(»

加夕M?

)⑷中提出了着个定理.

例3⑶设点P是线段《鸟上的一点,匕g的坐标分别是(&

弘),(七,月).

(1)当点P是线段[鸟的中点时,求点尸的坐标;

⑵当点尸是线段相的一个三等分点时,求点尸的坐标

解:

(1)如图6,由向量的线性运算可知

户=,可+。

8)=(亨,呼).

所以,

点尸的坐标是(正三,乂土匹].

I22)

(2)当点尸是线段《鸟的一个等三分点时有两种情况

如果即=gpg(图7),

那么

O户=OX+/^=O8+94g=Q4+g(Og_QR)=|o4+gQg=(^^,^A),即

点P的坐标是(竺2,生土丛].

同理

如果RP=2尸鸟(图8)

点尸的坐标是(卫生,乂土生I33

例4⑹求椭圆两点尹卷=1,两点际,鸟一和中心的连

线以及椭圆瓠所围成的所围成的S。

册。

V_4

X——A仿射变换{I

把椭咋变成相应的点

勺立,四),g(2质-,及)分别变成p;

(2®

2加),8(2&

-2&

)在O中

|明=4应

m

又因为:

sina=」一二这=之,。

=2圆O'

中的扇形面积

/?

424

So,ppc/=—x2axR-=—x16=4万

1:

24

而So,p;

o,_44_16

Sop总o3515

所以万

例5讨论三角形那些概念在欧氏几何里适用?

那些概念在仿射几何里适用.

解三角形的放射图形仍然是三角形,而且仿射变换将平行线变为平行线,将线段的中点变到线段的中点,因此

(1)三角形的中线;

(2)三角形的中位线性质;

(3)三角形的重心性质(三角形三条中线的交点)都属于仿射几何的内容.

结论

仿射变换解决了正交变换的不足,讨论了图形经仿射变换后的不变性质通过单比解决求图形面积的问题和证明梅内劳斯定理非常巧妙,最后证明了在平面上仿射变换的全体构成一个交换群.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 工学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1